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Classical billiards I

There exist only a few billiards with integrable dynamics:

There are some with fully chaotic dynamics:

FG 760: Scattering systems with complex dynamics IV. SOCRATES Workshop, Maribor, 23 - 27 February 2009 , p. 4



Classical billiards II

Mostly dynamics have a mixed phase space
Limaçon billiard (ρ = z + λz2, z ∈ C, |z| = 1) and Poincaré map

λ = 0.00 λ = 0.05

λ = 0.20 λ = 0.50
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Hierarchy of classical chaos

Name Definition Example

Recurrent Trajectory reoccurs infinitely
often to its neighborhood

All Hamiltonian systems,
with a finite phase space
(not chaotic).

Ergodic

time average
⇔

phase space average

xn+1 = (xn + b) mod 1
b : irrational
(not necessarily chaotic)

Mixing Correlation function declines for
infinitely long times

always chaotic, cat map
(xn+1 = (xn + yn) mod 1,
yn+1 = (xn + 2yn) mod 1)

K-system Nearly all trajectories are expo-
nentially separated

Stadium billiard (not C!),
cat map

C-System The system is hyperbolic in all
phase space points

Billiard with constant nega-
tiv curvature

Bernoulli-
system

System with full symbolic dyna-
mics and finite number of sym-
bols and a full shift

Bernoulli-shift-map
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Classical waves

Experiments can be performed with different classical waves

microwaves acoustics in solids

light water surface waves

ultrasound in water
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Microwave resonators

cylindrical symmetry in z-direction
z-component can be separated

transverse magnetic (TM) modes
~E = (0, 0, Ez(x, y, z))

metallic top and bottom plates
cut-off frequency νc = c/2h ⇒ Ez(x, y)

two-dimensional Helmholtz equation.
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Microwave resonators

cylindrical symmetry in z-direction
z-component can be separated

transverse magnetic (TM) modes
~E = (0, 0, Ez(x, y, z))

metallic top and bottom plates
cut-off frequency νc = c/2h ⇒ Ez(x, y)

two-dimensional Helmholtz equation.

Typical set-up

Frequency: 1 – 20 GHz
Wave length: 1.5 – 30 cm

FG 760: Scattering systems with complex dynamics IV. SOCRATES Workshop, Maribor, 23 - 27 February 2009 , p. 8



Microwaves versus quantum mechanics

There is a one-to-one correspondence between the stationary
Schrödinger equation

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

ψn = Enψn

with the boundary condition ψn|S = 0 (billiard),
and the two-dimensional Helmholtz equation

−
(

∂2

∂x2
+

∂2

∂y2

)

En = k2
nEn.

(En: electric field strength of z-component)

In quasi-two-dimensional microwave billiards even the
electromagnetic and the quantum mechanical boundary conditions
are equivalent.
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Advantages of microwave experiment

Real quantum systems:

antidot structures (Weiss et al. 1991)

mesoscopic billiards (Marcus et al. 1992)

quantum corrals (Crommie et al. 1993)

tunnelling barriers (Fromhold et al. 1994)

Aspects of microwave billiards:

corresponds to mesoscopic physics

daily-life sizes, parameters are easy to
control

no Coulomb interaction

test bed for scattering theory
(nuclear physics)

commercial measurement equipment (VNA)

Magnetoresistance
of quantum dots
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Husimi representation I

Example of a pulse as a projection on a Poincaré-Husimi function
with minimal ’uncertainty’:

[R. Schäfer et al. NJP 8, 46 (2006)]
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Husimi representation II

Classical Poincaré map vs. Poincaré-Husimi distribution
of an open quadrupolar billiard (time averaged):

[R. Schäfer et al. NJP 8, 46 (2006)]
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Random plane wave model

Which is an eigenfunction of a billiard and
which is a superposition of random plane waves?
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Random plane wave model

Which is an eigenfunction of a billiard and
which is a superposition of random plane waves?

Random superposition
of plane waves

6000 eigenfunction
of a Limaçon billard

by courtesy of Arnd Bäcker
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RWM - Distribution of ψ (closed system)

P (ψ) =

√

A

2π
exp

(

−Aψ
2

2

)

where A : Area of the Billiard
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Light fiber (k direction)

Near field (left) and far field pattern of a D-shaped fiber.
The far field corresponds to a Fourier-transform of the nearfield
and thus shows the distribution of ~k vectors.
[Doya et al. Phys. Rev. E 65, 056223 (2002)]
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Intensity distribution (acoustic billiards)

Vibration amplitude pattern for two eigenfrequencies of a plate of a quarter Sinai-stadium billiard (left column) and
corresponding distribution function for the squared amplitudes. The solid line is a Porter-Thomas function.

[K. Schaadt, PhD-thesis, NBI, Copenhagen, 1997, H.-J. Stöckmann, Quantum Chaos - An Introduction (University

Press, Cambridge, 1999).]
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Partial width (microwaves)

The partial width distribution of a two dimensional microwave
cavity.
The solid line corresponds to a Porter-Thomas distribution.
[Alt et al. Phys. Rev. Lett. 74, 62 (1995)]
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3-dimensional microwave billiard

metallic sphere is moved inside the cavity
Measured spectra as a function of frequency and sphere

position.

[Eckhardt et al. Europhys. Lett. 46, 134 (1999)]
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Frequency shift distribution (3D billiard)

‘Shift-eigenmode’ (δν ∝ −2~E2 + ~B2)
Distribution function of frequency shift ∆ν
Assuming 6 independent Gaussian modes: ⇒

P (∆ν) =

√
2α2

3π
|∆ν| exp

(

−α∆ν

4

)

K 1

(

3

4
α|∆ν|

)

[Dörr et al. Phys. Rev. Lett. 80, 1030 (1998)]

FG 760: Scattering systems with complex dynamics IV. SOCRATES Workshop, Maribor, 23 - 27 February 2009 , p. 19



Correlations function

Correlation function CΨ and C|Ψ|2 for the stadium billiard
(average over the 30 lowest eigenstates)

CΨ =
1

A
J0(|k||r|)

C|Ψ|2 =
2

3
(J0(|k||r|))2 +

1

3

[Eckhardt et al. Europhys. Lett. 46, 134 (1999)]
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Parametric dependence (global perturbation)

Sketch of the Sinai billiards

Corresponding level dynamics

Global velocity distribution (Theory from RMT: Gaussian)

[Barth et al. Phys. Rev. Lett. 82, 2026 (1999), Bart et al. Ann. Phys. (Leipzig) 8, 733 (1999)]
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Parametric dependencies (local perturbation)

Rectangular billiard with scat-
terers, one is moved Dynamics of the normalized

eigenvalues
[Barth et al. Phys. Rev. Lett. 82, 2026 (1999), Bart et al. Ann. Phys. (Leipzig) 8, 733 (1999)]
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Local velocity distribution

Local velocity distribution for different δ ranges:
0.35 < δ < 0.65 (a), 1.4 < δ < 2.6 (b) bzw. 5.1 < δ < 5.9 (c)

[Barth et al. Phys. Rev. Lett. 82, 2026 (1999), Bart et al. Ann. Phys. (Leipzig) 8, 733 (1999)]
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Velocity autocorrelation function (global)

Global perturbation
Dotted line corresponds to theory by Simons und Altshuler

(RMT)

[Barth et al. Phys. Rev. Lett. 82, 2026 (1999), Bart et al. Ann. Phys. (Leipzig) 8, 733 (1999)]
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Velocity autocorrelation (local)

rescaled parameter kr
for different δ ranges

[Barth et al. Phys. Rev. Lett. 82, 2026 (1999), Bart et al. Ann. Phys. (Leipzig) 8, 733 (1999)]
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Wavefunctions in open systems

Real ψR (a), imaginary part ψI (b), modulus |ψ|2 = ψ2

R
+ ψ2

I
(c), and phase φ (d) of a wave function ψ at a

frequency ν = 5.64GHz. Nodallines (for ψR und ψI) and nodal points (for |ψ|2) are marked. White corresponds
to the phase φ = 0 in d).

[U. Kuhl, Eur. Phys. J. Special Topics 145, 103 (2007)]
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Global phase rotation

Imaginary- vs. real part of the wavefunction at a frequeny
ν = 13.84 GHz. a) Directly measured and b) after a decorrelation
via a global phase rotation, ψR + iψI = e−iϕg,0 (ψ′

R
+ iψ′

I
). ϕg,0 is

a globale phase that comes in the experiment from the antenna
and the channel.
[U. Kuhl, Eur. Phys. J. Special Topics 145, 103 (2007)]
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Phase rigidity

Phase rigidity |ρ|2 =
∣

∣

∣

〈<ψ2
R〉−〈<ψ2

I 〉

〈<ψ2
R〉+〈<ψ2

I 〉

∣

∣

∣

2

as a function of frequency

N corresponds to the number of open channels

[U. Kuhl, Eur. Phys. J. Special Topics 145, 103 (2007)]
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Flow

Probability current density ~j. The color scale corresponds to the
modulus |j| and the arrows give the modulus and direction of ~j. In
the zoom the vortices (dots) and saddles (crosses) are clearly seen
with their sense of rotation.
[U. Kuhl, Eur. Phys. J. Special Topics 145, 103 (2007)]
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Intensity distribution (open systems)

Intensity distribution for four different wave functions at frequencies ν = 8.0 (a), 16.9 (b), 15.6 (c), and 15.4GHz

(d) with different phase rigidities |ρ|2. The solid lines corresponds to the theoretical prediction from the RWM.
The modulus of the wave function is shown in the inset.

[U. Kuhl, Eur. Phys. J. Special Topics 145, 103 (2007)]
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Current distribution

P (|j|) and as an inset the x component of j (P (jx)) is plotted.
The distortion for jx comes from the main transport direction.
[U. Kuhl, Eur. Phys. J. Special Topics 145, 103 (2007)]
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Vortex dynamics

Vortices as function of frequency:
Top: Transmission |S12| into the billiard
Dots are vortices (clockwise: red)
Crosses are saddles (yellow)
Below: Zoom into regions of creation and annihilation

[U. Kuhl, Eur. Phys. J. Special Topics 145, 103 (2007)]
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Vortex pair correlation function (theory)

Defining: C(R) = J0(R) with R = k|~r| und J0 the Bessel function. And
with the following abbreviations:

C = C(R), E = C′(R), H = −C′(R)/R, F = −C′′(R), F0 = −C′′(0)

D1 = [E2 − (1 + C)(F0 − F )][E2 − (1 − C)(F0 + F )], D2 = F 2

0 −H2

Y =
H2(CE2 − F (1 − C2))2

F 2
0
(E2 − F0(1 − C2))2

, Z =
D1D2(1 − C2)

F 2
0
(E2 − F0(1 − C2))2

where ′ denotes the derivative. Finally we can write the result as the
following integral which can be evaluated numerically:

gvv(R) =
2(E2 − F0(1 − C2))

πF0(1 − C2)

∫

∞

0

dt
3 − Z + 2Y + (3 + Z − 2Y )t2 + 2Zt4

(1 + t2)3
√

1 + (1 + Z − Y )t2 + Zt4

The charge correlation function gQ(R) which accounts also for the
chirality of the vortex points, can be expressed in a much nicer way:

gQ(R) =
4

R

d

dR

[

d arcsin(J0(R))

dR

]2

[R. Höhmann et al. Phys. Rev. E 79, 016203 (2009)]
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Vortex pair correlation function

Vortex pair correlation function g and charged correlation function
gQ for low (5-9 GHz, a) and high (15-18.6 GHz b) frequencies
[R. Höhmann et al. Phys. Rev. E 79, 016203 (2009)]
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Vortex nearest neighbor spacing

Nearest neighbor spacing for vortices without (a) and with
consideration (b) of the different sense of rotation. Solid lines
correspond to prediction using the Poisson approximation. Dashed
lines are numerical calculations using the RWM.
[R. Höhmann et al. Phys. Rev. E 79, 016203 (2009)]
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Vortex-saddle pair correlation function

(a) Saddle-saddle correlation function gss(R)
(b) Vortex-saddle correlations function gvs(R)
Experimental data (histogram) and asymptotic approximation
[R. Höhmann et al. Phys. Rev. E 79, 016203 (2009)]
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Vortex nearest neighbor spacing

Histogramms display the different nearest neighbor spacings of critical points. Solid lines correspond to the
predictions using the Poisson approximation. Dashed lines correspond to numerical calculations using the RWM.
Distribution of (a) Vortices with the same, (b) different, (c) and without consideration of the sense of rotation. (d)
saddle-points and (e) between vortices and saddles.

[R. Höhmann et al. Phys. Rev. E 79, 016203 (2009)]
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Correlations function including size effects

Spatial correlation function of the real part of Ψ. Left at 5.4 GHz
and right at 17.96 GHz. Red line corresponds to the RWM
prediction. Blue to the RWM prediction including the corrections.
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Scaling factor

Scaling factor s for the experimental pair correlation function to
reproduce the RWM prediction as a function of frequency.
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Vortex density (close to a straight wall)

Density fluctuations of critical points as a function of the scaled
distance Y from the straight wall: (left) vortex density; (right)
saddle density.
[R. Höhmann et al. Phys. Rev. E 79, 016203 (2009)]
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