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Abstract
In this series of lectures an introduction into quantum chaos is presented.

The discussion will be kept on an elementary level, and theory will be il-
lustrated, wherever possible, by experimental or numerical examples. Mi-
crowave billiards will play a major role in this respect.

The lectures start with a presentation of the various types of billiard ex-
periments. Mesoscopic systems are discussed as well, as far as they are of the
billiard type. In the second part the essential ideas of random matrix theory
are presented, including an introduction into supersymmetry. Spectral level
dynamics, when an external parameter is varied, shows a close analogy to
the dynamics of a one-dimensional gas with repulsive interaction. This may
be the explanation for success of random matrix theory in the interpretation
of the universal spectral features of chaotic systems. The coupling of the
billiards to the outer world is described in terms of scattering theory orig-
inally developed in nuclear physics. The course ends with an introduction
into semiclassical physics, in particular the work of Gutzwiller and his trace
formula establishing a connection between the spectrum of a system and its
periodic orbits.

Lecture 1

Billiard experiments

Until about 1990 only a very small number of experiments on the quantum
mechanics of chaotic systems existed, apart from the early studies of nuclear
spectra [1]. This changed with the studies of irregularly shaped microwave
cavities by Stöckmann and Stein [2]. The microwave billiards, vibrating
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blocks, and a number of variants to be discussed in this lecture are classical
wave systems, which use the equivalence of the Helmholtz equation and the
time independent Schrödinger equation [3].

Starting with a historical review, the state of the arts in billiard exper-
iments is presented with emphasis on a general survey and the technical
background. The results and their quantum mechanical implications will
be presented later. Mesoscopic systems are discussed as well, but are re-
stricted to billiard-like structures such as quantum dots, tunnelling devices,
and quantum corrals.

Lecture 2

Random matrices

Random matrix theory has been developed already in the fifties and six-
ties of 20th century by Wigner, Dyson, Mehta and others [4, 5]. Originally
conceived to bring some order into the spectra of complex nuclei, the interest
in random matrix theory renewed when it was observed that random matrix
theory seems to be able to describe the universal properties of the spectra of
all chaotic systems.

In this lecture the basic concepts will be introduced, knowledge of which
is indispensable already for beginners. Mathematical derivations will be pre-
sented only exemplarily to give an idea of the techniques applied. We shall
concentrate on topics where also experimental material is available such as
the nearest neighbour spacing distribution, number variance, spectral rigid-
ity, and spectral form factor.

In the last part the basic ideas of the supersymmetry technique will be
explained. It has become meanwhile the method of choice to treat ensemble
averages [6].

Lecture 3

Spectral level dynamics

In many spectroscopic experiments the energy levels of a system are deter-
mined as a function of an external parameter. In mesoscopic systems usually
an external magnetic field takes this role, in billiard systems it is a shape
parameter such as length. In chaotic systems degeneracies do not occur,
apart from accidental ones of measure zero. For two-level systems this effect
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is well-known from elementary quantum mechanics. The resulting motion
of the eigenvalues in dependence of the external parameter strongly resem-
bles the dynamics of the particles of a one-dimensional gas with a repulsive
interaction.

The dynamical concept has been introduced by Pechukas [7] and further
developed by Yukawa [8]. They showed that ordinary statistical mechanics
can be applied to describe the eigenvalue dynamics of the spectra of chaotic
systems. Random matrix theory then results as a direct consequence of the
Boltzmann ansatz of statistical mechanics.

If the Hamiltonian depends on two parameters, closed loops are possi-
ble in the two-dimensional parameter space with the surprising consequence
that the phases of the eigenfunctions may have changed, known as Berry’s
phases [9].

Lecture 4

Scattering systems

It is impossible to study a system without disturbing it by the measuring
process. To determine, e. g., the spectrum of a microwave billiard, we have to
introduce an antenna to irradiate the microwave field. The measurement thus
unavoidably yields an unwanted combination of the system’s own properties
and those of the measuring apparatus. The mathematical tool to treat the
coupling between the system and its environment is provided by scattering
theory, which has originally been developed in nuclear physics [10]. Later
this theory has been successfully applied to mesoscopic systems, as well as
to microwave billiards.

In this lecture scattering theory will be introduced with special empha-
sis on billiard systems. Random matrix theory and the model of random
superposition of plane waves will play an important role in this context.
Mesoscopic systems can be linked to scattering theory via the Landauer for-
mula [11] expressing the conduction through mesoscopic devices in terms of
transmission probabilities.

Lecture 5

Semiclassical quantum mechanics

In the preceding lectures we learnt that random matrix theory is perfectly
able to explain the universal properties of the spectra of chaotic systems, and
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this in spite of the oversimplifying assumptions applied. In this lecture we
shall concentrate on the indivudual system properties. We know from the
correspondence principle that in the semiclassical limit quantum mechanics
must turn into classical mechanics. This was the starting point for Gutzwiller
to develop his semiclassical quantum mechanics [12], culminating in the fa-
mous trace formula establishing a connection between the spectrum and the
classical periodic orbits of a system.

In the present lecture the background of semiclassical quantum mechanics
is sketched. The technique is applied to extract the contributions of the
different periodic orbits out of the spectra and wave functions. The most
spectacular manifestation of the periodic orbits is the scarring phenomenon,
found in many wave functions of chaotic billiards [13].
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