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Quantum information

Quantum feats :

Quantum secure communication
(no entanglement required, just no
cloning)

Teleportation
(entanglement needed, e.g., EPR state)

Quantum computation
(sufficient entanglement necessary (but
not sufficient), else efficient classical
simulation possible)
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Hilbert space

Hilbert space
H = HA ⊗HB

Usually we talk about qubits as basic units:
system with two levels |0〉 and |1〉 ; 2 dimensional Hilbert
space :

spin 1
2 particle (electron) : two orthogonal states are spin up

and spin down
photon polarization : two linear (circular) polarizations
two energy states of an ion

Whole system of n qubits : Hilbert space is H = H⊗n
i ,

dim(H) = 2n (exponential in n)
Elements from Hilbert space in computational basis
|01 . . .1〉 = |0〉 ⊗ |1〉 ⊗ · · · ⊗ |1〉.
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Definition of a separable state

Definition of a separable state:

Pure states

|ψ〉 = |ψA〉 ⊗ |ψB〉

Mixed states (density matrices)

ρ =
∑

i

pi |ψA
i 〉〈ψA

i | ⊗ |ψB
i 〉〈ψB

i |

pi > 0 and
P

i pi = 1 (|ψA,B
i 〉 need not be orthogonal)
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Entangled states

A state is entangled if it is not separable.

Basis states |0〉 and |1〉 (aka. quantum bits - qubits).
Pure entangled state of two qubits:

|ψ〉 =
1√
2
(|00〉+ |11〉), |ψ〉 =

1√
2
(|00〉 − |11〉)

|ψ〉 =
1√
2
(|01〉+ |10〉), |ψ〉 =

1√
2
(|01〉 − |10〉)

Bell or EPR states.
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Random quantum states - motivation

Analogy:
(classical) random numbers ⇐⇒ (quantum) random states

Why study?
They are generic (typical state).
Complex quantum system - random state during evolution
(quantum chaos).
Shared entangled state is a useful resource!
(state with a large Schmidt rank, e.g., random, maximally
entangled...)
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Random quantum states (def.)

Random pure states - definition

Several possibilities to define random |ψ〉 =
∑

i ci |i〉 :
ci are random Gaussian complex numbers
|ψ〉 is eigenvector of a random Hermitian matrix
|ψ〉 is a column of a random unitary matrix

unique unitarily invariant Haar measure

Questions
1 What are their entanglement properties?
2 How to generate them?
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Entanglement of pure states

Pure state entanglement

Schmidt decomposition:
|ψ〉 =

∑NA−1
i=0

√
λi |wA

i 〉 ⊗ |wB
i 〉.

|wA
i 〉 and |wB

i 〉 are orthonormal
λi are eigenvalues of the reduced ρA = trB|ψ〉〈ψ|

For mixed states it is hard to quantify entanglement
For pure states easy : all λi completely characterize it

if all equal, λi = 1
NA

, “the most” entangled state; in 2× 2 this
is for instance EPR state

Can we calculate λi for random pure states?
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Eigenvalues for random states

To calculate average 〈λi〉 (average over random states) in the
limit NA →∞ use Marčenko-Pastur for the density of
eigenvalues (Žnidarič, JPA 40 F105 ’07)
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How to generate random states?

In principle we need 2N − 1 parameters for random |ψ〉
(too many) They are generic, but are they physical?
We want a method that is polynomial in n = log(N)

Example

start with a non-random |ψ〉, e.g., |00 . . .0〉
at each step apply a random 2-qubit gate to a random pair
of qubits

How many steps do we need?
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Number of steps

Number of steps until all eigenvalues ≈ 1/NA, purity
I = trAρ

2
A ≈ 1/NA? (|ψ〉 is as entangled as a typical random state)

Single step analysis

expand ρ = |ψ〉〈ψ| over Pauli basis,
ρ(ci) =

∑
i ci σ

i1 ⊗ σi2 ⊗ · · · ⊗ σin

σij ∈ {1, σx , σy , σz}, matrix basis for U(2).
after one step you get ρ′(c′i ) = Uρ(ci)U†

to calculate purity we need c2
i

it turns out that (c′i )
2 depend linearly on (ci)

2 (no cicj
terms)!
Markov chain, (c′)2 = M · c2

(Oliveira, Dahlstein, Plenio, PRL 98, 130502 (07))
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Markov chain

Markov chain
Markov chain only if two-qubit gate preserves Pauli
matrices (WσαW † = σβ)
dimension of M is 4n

What is the gap ∆? −→ number of needed steps
Is the chain rapidly mixing, i.e., ∆ ∼ 1/poly(n)?

Analytical estimate for W = CNOT and random i − j
coupling: ∆ > 4

9n(n−1) (Oliveira et.al. (07))

Numerics gives (Žnidarič, PRA 76, 012318 (07)) ∆ � 1.6/n.
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Analytical solution

Space of n “qudits”, e.g., each site 4 states (Pauli matrices).

M =
1
n

n∑
i

Ti,i+1 ⊗ 1

T transition matrix for two “qudits” (42 × 42) and U(4) gate,

T =


1 0 · · · 0
0 1

15 · · · 1
15

...
...

. . .
...

0 1
15 · · · 1

15

 .

Calculate the gap ∆!
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Analytical solution (cont.)

Markov chain on 4n equivalent to spin chain on 2n

U(4) and nearest neighbor coupling – XY model:

hXY =
1 + γ

2
σx

i σ
x
j +

1− γ

2
σ

y
i σ

y
j + h(

1
2
σz

i +
1
2
σz

j ).

U(4) and all-all coupling – Lipkin-Meshkov-Glick:

hSz + JxS2
x + JyS2

y

CNOT and XY gates – XYZ model

Analytical gap ∆ ∼ 1
n
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Entanglement and classicality

Question
1 Why is there no observable entanglement in macro-world?

Classical irreversibility:

practical issues of reversibility : almost
impossible to reverse
role of initial conditions: for most entropy
increases

picture from R.Penrose
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Practicality

Random states are quantum

almost maximally entangled, von Neumann entropy S ≈ n
2

random states are very entangled - very quantum

...are classical
in classical limit (N →∞) random states mimic
microcanonical density
quantum expectation value in a random state is close to
the classical average

E

E∆
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Paradox

How come?
Resolution:

von Neumann entropy does not tell everything!
Entanglement hidden in many degrees of freedom, e.g.,
Schmidt coefficients are ∼ 1/

√
NA - exponentially small.

Difficult to detect!
For all practical purposes classical.
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Entanglement Witness

Definition
If tr(ρsepW ) > 0 for all separable ρsep and tr(ρentW ) < 0 for
at least one entangled ρent W is an entanglement witness.
It detects entanglement of ρent.
In general different W for different ρent.

Decomposable EW
Especially simple are decomposable EW:

W = P + QTB , P,Q ≥ 0

QTB is partial transposition with respect to subspace B
D-EW are equivalent to PPT criterion
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Example of W

Example

Take for Q a projector, Q = |GHZ 〉〈GHZ | with
|GHZ 〉 = 1√

2
(|000〉+ |111〉), and P = 0.

Subsystem B is last qubit, W = QTB ,
W = 1

2(|000〉〈000|+ |111〉〈111|+ |001〉〈110|+ |110〉〈001|).
W has one negative eigenvalue with the eigenvector
|ψ〉 = 1

2(|001〉 − |110〉).
〈ψ|W |ψ〉 = −1

2 . Detects entanglement of |ψ〉.
〈GHZ |W |GHZ 〉 = 1

2 . Does not detect entanglement of
|GHZ 〉.
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Results (M.Ž., T.Prosen, G.Benenti and G.Casati, JPA 40, 13787 (2007))

Large random states almost classical.
Random W (unknown ρ) : Gaussian p(w),
tr(Wρ) ∼ −1/N2

A

P(w < 0) = (1− erf(1/
√

2))/2 ≈ 0.16
mixing k states, ρ ∼

∑k |ψi〉〈ψi |,
P(w < 0) = (1− erf(

√
k/2))/2 � 1√

k
e−k/2

Optimal W (known ρ) : tr(Wρ) = −|λmin(ρ
TB)|

pure state (k = 1) : λmin = −4/NA
large k � 1 : λmin ∼ −1/N2

A
k > k∗ ≈ 4N2

A : λmin > 0
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Initial conditions

Setting
Large n qubit quantum system
Start in generic separable state (no entanglement)
Evolve with some hamiltonian
What is entanglement of smaller subsystem (two qubits)

How much entanglement, for how long...?

We would “like” to see: For generic i.c. low entanglement only
for short times and regardless of H!
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(M.Ž. preprint arXiv:0805.0523)

Arbitrary H with two-particle coupling h. Initial time scale
dictated by

λTA
min = −|δ|t +O(t2), δ = 〈χ⊥Aχ⊥B |h(2)|χAχB〉.
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Initial state randomness as a universal source of decoherence

randomness in initial state
leads to universal behavior of entanglement between two
qubits regardless of the coupling
entanglement present only for short time and directly
coupled qubits
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Summary

Giving Schmidt coefficients completely determines
entanglement of pure states – analytical expression
Generating random bipartite entanglement in τ ∼ n ln 1

ε ,
gap ∆ ∼ 1/n

No entanglement in systems with many degrees of freedom:

Practicality : hard to detect because many small Schmidt
coefficients
Generic initial states : entanglement only for short times
and directly coupled qubits. Independent of H!
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