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1. Introduction

@ Bose-Einstein condensation: neutral atoms are caught in a trap and
cooled down to &~ zero temperature, where a macroscopic quantum
state forms in which all bosons occupy the same ground state

@ Gross-Piatevksii equation for Bose-Einstein condensates (BEC)

e BEC with long-range interactions



ground state of interacting neutral atoms at 7' =0

system of N identical bosons in an external potential U(7),
interacting via a two-body interaction potential V (7, 7)

@ many-body Hamiltonian

H = sz +ZU )+ > V(@

i<j
o Zero-temperature bosonic ground state: W = [, (i)

Hartree equation for single-particle orbital 1

o
{p—+U<f>+<N—1>/ G >|2d3f'}wm—i oot

2m

@ nonlinear Schrédinger equation
@ superposition principle no longer applicable



Bose-Einstein condensation of “ordinary” neutral atoms

("Li, ®Rb, ...): potentials

@ external trapping potential to confine the condensate
U(R) = mo o 2 2,2 22
(F) - 5 (wzx +wyy —|—sz )
Wz, Wy, W, trapping frequencies

o dilute condensate, weakly interacting atoms = only the short-range
contact two-body interaction (s-wave scattering interaction) active

drah?
m

Vi(7, i) = o(F =)

a: s-wave scattering length



Bose-Einstein condensation of “ordinary” neutral atoms

("Li, ®Rb, ...): Hartree and Gross-Pitaevskii equation

Hartree equation for single-particle orbital v

{%+5<w 97 4 (v - 1) |w<v|2} v() = in 247

e for N> 1. (N—1)~ N,
define macroscopic wave function U () := v/ N¢(7), i.e. ||¥]|> = N

Gross-Pitaevskii equation for W

{ﬂ+ G-+ o |\m|2} (7) = in 20




BEC of neutral atoms with additional long-range inter-

action: dipolar atoms (experiments by Pfau et al., PRL 94, 160401 (2005))

chromium (52Cr): large magnetic moment, p = 6up, i.e. also a
long-range dipole-dipole interaction is active
pop? 1 —3cos? ¢’

4w |r—r/|3

Vdd (I‘7 I‘l) =

@ new aspect: relative strength of the long-range and short-range
interactions can be tuned by Feshbach resonances (change of the
scattering length a)

Unstable

Trap aspect fabio A =

www.pi5.uni-stuttgart.de/forschung/chromium1/chromium1.html




BEC of neutral atoms with alternative long-range

interaction: gravity-like 1/r interaction

Motivation: proposal by D.O. O'Dell, S. Giovanazzi, G. Kurizki, V.M. Akulin, PRL 84, 5697 (2000)

6 "triads” of intense off-resonant

1M
laser beams average out 1/73 . L
resulting atom—atom potential in
interactions in the near-zone limit of
the near-zone:
the retarded dipole-dipole
. . . 2 2
interaction of neutral atoms in the U(F e ) — _ 11 Ik"a 1
i . ) dn  cel  [F-T]
presence of radiation I, while
retaining the weaker 1/r interaction
atriad

u

e gravity-like interaction: V,,(7,7") = “monopolar atoms”

A
@ novel physical feature: self-trapping of the condensate, without
external trap,

@ theoretical advantage: for self-trapping analytical variational
calculations are feasible



purpose of this talk

to study the classical and the quantum nonlinear effects of the
Gross-Pitaevskii equations for cold

@ monopolar quantum gases (1/r interaction) and

e dipolar quantum gases (dipole-dipole interaction)



outline of the talk

@ 1. Introduction

@ 2. Scaling properties of the Gross-Pitaevskii equations with
long-range interactions

@ 3. Quantum results: solutions of the stationary Gross-Pitaevskii
equations

@ 4. Nonlinear dynamics of Bose-Einstein condensates with atomic
long-range interactions



2.1 Gross-Pitaevskii equation for atoms with gravity-like

Interaction in an isotropic trap

Gross-Piatevskii equation for orbital 1)

-2 % 2 )2
P mwy o dmah D W) 5 _
()

@ natural units: trap energy hwy, oscillator length ag
self-trapping: fiwg — 0, ag = \/W — 00, bad units
@ more adequate: "atomic units”
analogy u < e? /4meg: "fine-structure constant” «,, := u/hc
e "Bohr radius” a, = Ac/a,, = h/mu
e "Rydberg energy” E, = a2mc?®/2 = h?/2ma?



Gross-Piatevskii equation for monopolar gases

in " atomic units”

{-aom e Non Liup —an [ 1O ) 'st*'}w(mzewm

mean—field Hamiltonian H ¢

@ three physical parameters:
~v = fwy/Ey: trap frequency
N : particle number,
a/a,: relative strength of scattering and gravity-like potential

@ estimate: a ~ 1072 m, a, ~ 2.5 x 10~* m, thus
a/a, ~ 1076 —107°

scaling property of H,,; = only two relevant parameters:
v/N?,N?a/a,

mean field energy: E(N, N2a/ay,,v/N?)/N® = E(N =1,a/ay,")



2.2 Gross-Pitaevskii equation for atoms with dipolar

Interaction in an axisymmetric trap

Gross-Pitaevskii equation for orbital 1)

(mw{‘*”hz o ()2 + 1ot / g L300’ |w<r'>2}> ¥ ()

m 47 |r = r/|3
= ey (r)

with

R h2

h:—Z%Ar+WmMﬂ
and

Wiz = m(wzrz + wsz)/Q
@ units of length: aq energy: Fy4 frequency wq

s Fo*m
d 2mh?

Ed = hz/(2ma3) wq = Ed/h,



Gross-Pitaevskii equation for dipolar gases

in dimensionless form:
a
[ —A+ 7207 + 4227 +J\787ra—|¢(r)|2

+ N o2 D] () = <o)

with
Yoz = Wp,z/(2wa)

@ 4 physical parameters: N, a/aq,7,, 72, (7 = fyp/ 72/3 A=7/7)

scaling property of H,,; = only three relevant parameters:
N2:Y7 >\7 (I/(Id

mean field energy: E(N,a/aq, N*3,\) = E(N = 1,a/aq,7, \) /N?



3. Quantum results: solutions of the stationary

Gross-Pitaevskii equations

1/r interaction (monopolar quantum gases):
@ variational with an isotropic Gaussian type orbital:
W = Aexp(—k?r?/2)

@ numerically accurate by outward integration of the extended
Gross-Pitaevskii equation

dipole-dipole interaction (dipolar quantum gases):

@ variational with an axisymmetric Gaussian type orbital:
¢ = Aexp(—k;p? /2 — k32%/2)
coupled system of nonlinear equations resulting from
OE _ o 9E

ok, s 5% = U is solved numerically for given trap parameters and
scattering length



1/r interaction: chemical potential

for different trap frequencies

5 a)
R
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N’a/a,

solid: accurate numerical calculation

dashed: variational
two stationary solutions are born at the critical point in a tangent
bifurcation, below the critical point no stationary solutions exist



1/r interaction: bifurcation point as a function of trapping
frequency

solid: accurate numerical calculation

dashed: variational



dipole-dipole i

for N24 = 3.4 x 10* and different trap aspect ratios

7><105 T
6x10°F
5x10°[
w x10°F
N L
a4 5|
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. A=1.0
1x10°F  |--- - A=0.7 b
0 | | |
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two stationary solutions are born at the critical scattering length in a
tangent bifurcation, below the critical scattering length no stationary
solutions exist



dipole-dipole interaction: bifurcation of the mean-field

energy

for N25 = 3.4 x 10* and different trap aspect ratios

7
RE]
Sh
S
Sord
d

6x10°

S
- ’
1

5x10°

4x10°F

NE

ET0ST0 i R p—

2x10°1

> > > > > >
o

SN~
oL |NohvmwhrO
|

5 | L
1x10 0.08 1 0.12 0.14 0.16



dipole-dipole interaction: universal dependence of the

critical scattering length act/aq on the trap geometry:

|
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Bose-Einstein condensates with long-range interactions:

tangent bifurcations and exceptional points

résumé so far

@ Stationary solutions appear only in certain regions of the parameter
space.

@ Two solutions appear in a tangent bifurcation at the critical value in
parameter space.

@ At the tangent bifurcation the chemical potential, the mean field
energy, and the wave functions are identical.

@ This behaviour is typical of exceptional points.
@ The bifurcation points indeed turn out to be exceptional points.



4. Nonlinear dynamics of Bose-Einstein condensates with

atomic long-range interactions

starting point:

@ time-dependent Gross-Piatevskii equation for accurate numerical
calculations
h2

—5 A+ Vex(r )+N(

drah?

OO + Vi) )| 00) = i 0o

o Viny = electromagnetically induced attractive 1/r interaction
o Vint = dipole-dipole interaction
@ time-dependent variational principle for variational calculations

\li(t) — Hp(t)||?> = min with respect to ¢ (¢ = 1)).

Using a complex parametrization of the trial wave function
Y(t) = x(A(t)), the variation leads to the equations of motion for
the parameters A(t):

<g—fi¢—H1p>—0<—>K)\——th|thK < gf> =<§—;"‘H(¢>



4.1 BEC with 1/r interaction, self-trapping, variational

Gaussian trial wave function 9 (r,t) = exp{i[A(t)r? + ~v(t)]},

A, ~ complex functions, equations of motion for A = A,. + iA;:

A =242 - )+ A (adi= 3) A= -t
iy

replace the variational width parameters A = A, + iA; with two other
dynamical quantities

1 /3 3
= — = 2 = _—
q—2\/Ai Vir®), p A”’Ai’



equations of motion in Hamiltonian form

mean-field energy:

iﬁfa V3
¢ 2Vmg® mq

converts the Gross-Pitaevskii equation into a one-dimensional classical

E=H(qp) =T+V=p"+

autonomous Hamiltonian system with potential V' (q):

-0.08

8H
%

, 3 31 N
p o= - V7o Vre:
u q -0.16

V(@)
o
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BEC with 1/r interaction, self-trapping, variational

phase portraits for different scattering lengths a = N%a/a,

a=-118=a, a=-13<ag

fixed points: A, =0, 4; = é + gz (1 +4/1+ 8a/37r) clear indication
of a stable and unstable stationary state.



4.2 Linear stability analysis of variational and exact

quantum solutions for monpolar gases



linear stability analysis of the variational solutions

Linearization of the equations of motion around the stable (+) and

unstable (—) stationary states with the ansatz A hn)( t) = A(O) A yields
the eigenvalues

i ez
>\+:j:81 3 \ :igi 3 _
ﬂ(q/l-}-%—l)

2
9”(,/1+§—;‘:+1)

@ The eigenvalues A\, = +iw are always imaginary for a > —3m/8.

Time evolution: A" (1) = Af’) wt= elliptic fixed point,
condensate osallates perlodlcally

@ The eigenvalues A_ are positive and negative real for a > —3x/8.
Time evolution: A(lm)( t) = A( ) ert=

condensate collapses

= hyperbolic fixed point,



linear stability analysis of the exact quantum solutions

Linearization of the time-dependent Gross-Pitevskii equation around the

stationary solutions z/A)(r,t) with the Fréchet derivative (using real and
imaginary parts of the wave function) leads to:

9 n 2 / ¢( )
aéwR(r,t) = (—A — e+ 8may(r)” — /d - |> 5ol (r,t)
%61{11(7'7@ = (—A — &+ 24marp(r)? — /d3 ! |;/}( ™) |> Sy (r,t)

+4TZJ(,’,) /dBT/TZ}(T/) 51/]R(r/at)

r— ']

o Note: 09%(r) and 64! (r) can be complex wave functions

@ Only radially symmetric solutions are searched



linearized integro-differential equations

@ Using the ansatz for the eigenmodes
ST (r,t) = 60 (r)e, S9! (r, 1) = vy (r)e

the two coupled integro-differential equations are transformed to
ordinary differential equations with boundary conditions.

@ Including the stationary wave function, the potential, and the
linearized potential a total set of 18 real-valued first order
differential equations must be solved.

@ 6 real parameters must be varied to fulfill the boundary conditions.

@ Because of a symmetry of the differential equations the stability
eigenvalues occur in pairs: A\ = —Ag



stability eigenvalues for the ground state: numerical vs.

variational results

(/<'\ }\’inum)
§ 00 I E ( }\‘(var) )
-0.1 + L—/—’
-0.2 ‘ ‘
-2 -11 -10 -09 -08 -07 -06 -05
a
@ There is a pair Ay = — Xy of purely imaginary eigenvalues which

agree qualitatively very good with the variational calculation.
o Further purely imaginary eigenvalues can be found for “higher”
states of the linearized system.



stability eigenvalues for the collectively excited stationary

state: numerical vs. variational results

8.0 \ ‘ ‘
}\’Snum)
401 /
2
© 00
(14
4.0 |
-8.0 L L L L L L
-2 -11 -10 -09 -08 -07 -06 -05
a
@ There is a pair A\; = — )5 of purely real eigenvalues which agree

qualitatively very good with the variational calculation.

@ Further purely imaginary eigenvalues were found for “higher” states
of the linearized system.



4.3 Time evolution of condensates of monopolar gases



time evolution of the condensate: variational

above bifurcation point, stable region, a = —1 > a., 4;(0) = 0.3
9
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time evolution of the condensate: variational

above bifurcation point, beyond separatrix, a = —1 > a¢,, 4;(0) = 0.38
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time evolution of the condensate: variational

below bifurcation point, a = —1.3 < a,, 4,(0) = 0.1
3.0
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exact time-dependent quantum mechanical calculations

numerically exact propagation of perturbed stationary states ¢4 ()

(r) = f-olr- f23)

vy stable stationary state
Yo unstable stationary state

exact computations performed by the split operator method using the
splitting H=T+V

e—iT(T+V) — e—i(T/Q)Te—iTVe—i(T/2)T + 0(7_3)



exact BEC dynamics, in the vicinity of ¢

Scaled scattering length a = —0.85 and f = 1.001
2.0 — ;
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\ v
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exact BEC dynamics, in the vicinity of ¢

Scaled scattermg length a = —1.0 and f = 1.00
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exact BEC dynamics, in the vicinity of ¢

(W)l

Scaled scattering length a = —0.85 and f
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cattering length a = —0.85 and f

(W)l
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exact BEC dynamics, in the vicinity of ¢
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exact BEC dynamics, in the vicinity of

Scaled scattering length a = —0.85

f=1.25 f=1.01
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4.4 Dynamics of BEC with dipole-dipole interaction,

variational

axisymmetric Gaussian trial function
Y, z,t) = AP AN A = A1), A= AL(t), ¥ = (1)

Equations of motion follow from the time dependent variational principle

AL = —4((A4))° = (A))) + fo(A], AL yY)
Al = —8ATA!

AL = —4((AD)? — (AD?) + fo(4), ALyY)
Al = —8ATA!

AT o= —dAL —2A% + f (AL, ALY
o= 4A) 4 24]

solved with the initial values A7 =0, A’ >0, A7 =0, A > 0 and

1 7.‘.3/2

(P N
L RN YTV
Four remaining coupled ODEs for A;A;,AQ, Al |



equations of motion in Hamiltonian form

introduction of new variables q,, ¢.,p,, p:
— Po — 1 — Pz - 1
ReA, = Tq, ImA, = er:d ReA, = 1 ImA, = 52

equations of motion for q,, q.,p,,p. follow from the Hamiltonian:

1
2 2 A,/ =5
D p 1 2 92 \V 1 2 2
H=T+V="24+24 42 — 42
2 2 2qur %q’”+2\/27rq§ TRg T

2
A1+ 2 V2
a2 +q§ 5 [242
q; ?g_‘l

2 a3
3q,, arctan| ﬁ —1]
z
9p




2d nonintegrable Hamiltonian system, potential V' (q,, q.)
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Poincaré surface of section

(H) = 450000, /772 =34x10% ~./7,=6, a=0.1
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Poincaré surface of section

(H) = 624000, §/7.72=34x10%, ~./7,=6, a=0.1
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Poincaré surface of section

(H) = 624000, §/7.72=34x10%, ~./7,=6, a=0.1
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Poincaré surface of section

(H) = 900000,

=75 =34 x 104, v./v,=6, a=0.1
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Poincaré surface of section

(H) = 6000000, {/v.72 =34x10% 7./7, =6, a=0.1
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Linear stability analysis of the variational solutions

linearization of the equations of motion for the real and imaginary parts
of A, and A, around the stable and unstable stationary state yields four
eigensolutions 11, o< €' with eigenvalues x for each state

250000
125000
0k
-125000
-250000

500000 T T
250000 R

0 —— 3
-250000 1

-500000 ; ! ‘ S ———
-0.02 000 0.02 004 006 008 0.10

Re(k)

Im(x)

KGS,]’ KGS,Z KES,l’ KEs,z
KGS.3’ KGS.4 ............. KESS’ KES,4

N2y =34x10", A\=6
exact dynamic calculations for dipolar quantum gases: under way



Summary and conclusions

Motto: "Let's face BEC through nonlinear dynamics”

@ variational forms of the BEC wave functions (of a given symmetry
class) convert BECs via the Gross-Pitaevskii equation into
Hamiltonian systems that can be studied using the methods of
nonlinear daynamics

@ the results serve as a useful guide to look for nonlinear dynamic
effects in numerically exact quantum calculations of BECs

@ existence of stable islands as well as chaotic regions for excited
states of dipolar BECs could be checked experimentally
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Bonus material: exceptional points in linear quantum

systems

Definition and properties

Exceptional points are the coalescence of two (or even more) eigenstates
at a certain parameter value of a system.

MMNZ(N) = e(N)Z(N)
e Two complex eigenvalues are identical (degeneracy).
@ At the exceptional point a branch point singularity appears.

@ The corresponding space of eigenvectors is one-dimensional.

Appearance in quantum systems
@ Exceptional points can appear as degeneracies of complex energy
eigenvalues of non-Hermitian Hamiltonians which describe
resonances.

@ Example for a real physical system: Hydrogen atom in crossed
electric and magpnetic fields



A simple example

2 X 2 matrix with an exceptional point
1 A
M) = ( A -1 )

o Eigenvalues: e1 = V1+ A2 e = —v 1+ X2

o Eigenvectors:
71(\) = 2 B(\) = 2
A= i W=l

There are two exceptional points for A = +£i

M (%) = ( ili :—Lll ) e1o() =0,  &(%i) = ( ﬂFli )



Circle around an exceptional point in the parameter space

A further property of exceptional points

The two eigenvalues which degenerate at the exceptional point are
permuted if a closed loop around the exceptional point is traversed in

parameter Space.
€

parameter A eigenvalues e

_>

onal point

@ The end point of the path of the first eigenvalue is the starting point
of the second and vice versa.

@ The combined paths of both eigenvalues lead to a closed loop.



Self trapped condensate with attractive 1/r-interaction

@ Scaled extended Gross-Pitaevskii equation in “atomic units”:

SU() = | —Art (mmmf =7 di”vﬂW)] e

7=

@ Trial wave function for a variational solution:

. — k22 1 /n1l / 8

Degeneracy: analytical results

3
a/:—gﬂ- — k+:k_, E+:E_ i ==,

@ Energies are identical

@ Wave functions 95, and 1;_ are identical



1/r: Circle around the degeneracy

Exceptional point?
@ A two-dimensional parameter space is required: extension to
complex numbers: a € C

@ A clear proof is the permutation of two eigenvalues if a circle around
the critical parameter value is traversed:

3 A
a:——ﬁ+rew, p=0...21

0.03 ‘ 0.00015
00010 . e, 4
S g 0.02 g 0.00010 |-
_0.0005 | ~ o001 , ~  0.00005 F
© >
£ 00000 | : : < 000 g W 0.00000 |
= 00005 | i E oo : E  .0.00005 |
| -0.02 1 -0.00010 |
-0.0010 ¢ -0.03 : -0.00015
-1.1794 -1.1769 -0.7400 -0.7075 -0.6750 -0.14165 -0.14130
Re(a) Re(eyar) Re(E,r)

We have confirmed our results with numerically exact calculations.



1/r: Mean field energy and chemical potential for r < 1

Fractional power series expansion of the mean field energy

~ 4 8 32 2 3
Ei(w):—%—i-o-\/;ewz—l—mw/Fe‘P
4 32 3 ; 4
(£ 32 B
(97r 97T2> e +O(\/F)

o The first order term with the phase factor €'#/2 vanishes.

@ Responsible for the permutation: third order term
Fractional power series expansion of the chemical potential

~ 2 ; 4 12 :
Eyp) = __Oiﬁ.\/;ewﬂ _ ( + 8 ) el

97 = 3w 3r | 2772
8 64 3 ; 4
L B C I
(97r 97T2> s T (ﬁ )

@ The first order term with the phase factor ¢'#/2 does not vanish.



Dipolar condensate

Scaled extended Gross-Pitaevskii equation

wm:[ At 20 47222 1 Sma |9
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Dipolar condensate: Circle around the degeneracy

a = Qerit + 1'%, p=0...2w

@ )\ = 1: attractive dipole-dipole interaction

0.0012 15000 4000
00006 | < - 7500 2000 1
< w w
£ 0.0000 E 0 E 0 1
-0.0006 | *._ B 7500 |- -2000 1
-0.0012 -15000 -4000 ‘
0.1370 0.1394 208 315 332 251 255 259
Re(a) Re(g)/10° Re(E)/10°
@ )\ = 6: repulsive dipole-dipole interaction
0.0012 2000 1500
00006 | 1000 | /7 750t 1
< ) Lf w L ]
£ 00000 E o £ 0
-0.0006 | *. 1000 F N 750 | 1
-0.0012 -2000 -1500
-0.0208 -0.0182 464 466 468 347.0 348.5 350.0

Re(a) Re(g)/10° Re(E)/10°



discovery of exceptional points in stationary solutions of

the Gross-Pitaevskii equation

@ Exceptional points are branch point singularities, which are known
from open quantum systems.
@ A "nonlinear version” of an exceptional point appears in the
bifurcating solutions of the (extended) Gross-Pitaevskii equation:
o BEC in a harmonic trap
e BEC with attractive 1/r interaction
e BEC with dipole-dipole interaction
@ The identification of the exceptional points is possible with a
complex extension of the scattering length.

@ BECGs near the collapse point are experimental realizations of a real
physical system close to exceptional points.





