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0. PREVIEW

• adiabatic invariants denoted by I: long history, important applications, classically
and quantally, but rarely rigorous

• they are conserved under very slow changes over an time interval of length T

• definition: adiabatic parameter ε = 1
T : the ideal adiabatic limit: ε→ 0

• 1D harmonic oscillator q̈ + ω2(t)q = 0 : general ω(t)

• if ε→ 0: it is known (Einstein 1911): I = E(t)/ω(t)

• define an initial ensemble of phase points with sharp energy E0:
the uniform canonical ensemble of initial conditions

• distribution of final energy P (E1) after time t = T : universal distribution

• P (E1) is fully determined by the first moment Ē1

• µ2 = E2
0

2

(
(Ē1
E0

)2 − (ω1
ω0

)2
)

for any ω(t)



• all higher even moments are powers of µ2, whilst the odd ones are zero

• the distribution is: P (E1) = 1

π
√

2µ2−x2
, where x = E1 − Ē1

• T = ∞ or ε = 0 : ideal adiabaticity: µ2 = E2
0

2

(
(Ē1
E0

)2 − (ω1
ω0

)2
)

= 0
and Ē1 = ω1E0/ω0 or I = E1/ω1 = E0/ω0

• finite T : calculate Ē1 and µ2 in general case by exact WKB-theory to all orders

• prove: if ω(t) is of class Cm then: µ ∝ T−(m+1), or µ2 ∝ ε2(m+1)

• if ω(t) analytic then exponential law: µ ∝ exp(−αT ) or µ ∝ exp(−α/ε)

• distribution P (E1) is universal (independent of ω(t)) for uniform canonical
ensembles of initial conditions.
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1. Introduction

Hamilton systems: Phase space (q, p)

Phase flow: (q0, p0) → (q1, p1)

Hamilton function H = H(q, p, t)

Hamilton equations: q̇ = ∂H
∂p ṗ = −∂H

∂q

Energy evolution: Ė = dE
dt = dH

dt =
∂H

∂q
q̇ +

∂H

∂p
ṗ︸ ︷︷ ︸

=0

+∂H
∂t = ∂H

∂t

Therefore: The energy E is constant only when ∂H
∂t = 0 (autonomous systems)

Liouville theorem: Phase space volume is always preserved: phase space flow velocity
vector field has zero divergence (”incompressible flow”)

In general, in nonautonomous Hamilton systems, the energy E = E(t) = H(t)
changes with time.



But, if the changing of the parameter is very slow, on the typical time scale T , there
might be a quantity I, a function of the said parameter, of the energy E and of other
dynamical quantities, which is approximately conserved.

It might be even exactly conserved if T →∞, i.e. if the variation is infinitely slow,
to which case we refer as the ideal adiabatic variation.

Such a conserved quantity is called adiabatic invariant, and it plays an important
role in the dynamical analysis of a long-time evolution of nonautonomous Hamilton
systems.

The theory of adiabatic invariants is aimed at finding the adiabatic invariants I and
analyzing the error of its preservation at finite T . Namely, the statement of exactness
of I is asymptotic in the sense that the conservation is exact in the limit T →∞,
whilst for finite T we see the deviation ∆I = If − Ii of final value of If from its
initial value Ii and would like to calculate ∆I. Thus for finite T the final values of I
will have some distribution with nonvanishing variance.

In other words, if we start with different initial conditions but at the same fixed and
sharply defined initial energy E0, we observe a distribution of the final energies P (E1)
which has a nonvanishing variance µ2. We study this distribution function P (E1).



One-dimensional harmonic oscillator: q̈ + ω2(t)q = 0

Example: small oscillations of a mathematical pendulum:
ω2(t) = g/l(t), where g is the gravitational acceleration and l(t) = the length of the
pendulum at time t

It is known since Lorentz (a lecture at the Solway conference 1911) and Einstein (a
paper published in 1911): The adiabatic invariant is I = E(t)/ω(t)

This implies: E(t) = Iω(t) = I
√

g
l(t) ∝

1√
l(t)



Please observe: 2πI is exactly the area in the phase plane (q, p) enclosed by the
energy contour of constant E.

Indeed, in a general 1-dim system with ω(t) 6= 0, the adiabatic invariant I is
rigorously equal to

I =
1
2π

∮
E=H(q,p,t)

p.dq (1)

for 1D harmonic oscillator: I = E(t)/ω(t) = const. if T = ∞



Another elementary example: bouncing ball between two moving planes





2. Transition map and general exact considerations

The Hamilton function: H = H(q, p, t) = p2

2M + 1
2Mω2(t)q2

q, p,M, ω are coordinate, momentum, mass and the frequency.

The numerical value of H(t) is the energy of the system E(t) at time t.

The equation of motion is linear: q̈ + ω2(t)q = 0

We define the transition map: Φ :
(
q0
p0

)
7→
(
q1
p1

)
.

It is a linear area preserving map: Φ =
(
a b
c d

)
, so that Det(Φ) = ad− bc = 1.

Let E0 = H(q0, p0, t = t0) be the initial energy and E1 = H(q1, p1, t = t1) be the
final energy, that is,

E1 = 1
2

(
(cq0+dp0)

2

M +Mω2
1(aq0 + bp0)2

)
.

We want to study the distribution P (E1) of final energy E1.



Define the uniform canonical ensemble of initial conditions:

q0 =
√

2E0

Mω2
0
cosφ, p0 =

√
2ME0 sinφ, where the action is I0 = E0

ω0

Then we obtain: E1 = E0(α cos2 φ+ β sin2 φ+ γ sin 2φ)

with: α = c2

M2ω2
0
+ a2ω2

1

ω2
0
, β = d2 + ω2

1M
2b2, γ = cd

Mω0
+ abM

ω2
1

ω0
.

By definition: The distribution of the initial angle variable φ is uniform
(constant) and equal to 1/(2π).

The mean value of E1: Ē1 = 1
2π

∮
E1dφ = E0

2 (α+ β).

x =def E1 − Ē1 = E0(δ cos 2φ+ γ sin 2φ), δ = 1
2(α− β).

The variance: µ2 = (E1 − Ē1)2 = E2
0

2

(
δ2 + γ2

)
= E2

0
2

[(
Ē1
E0

)2

−
(

ω1
ω0

)2
]
.

Odd moments: (E1 − Ē1)2m−1 = 0 Even m.: (E1 − Ē1)2m = (2m− 1)!!µ2m/m!

If m→∞: → 2m/
√
πm (to compare with Gaussian: → 2mΓ(m+ 1/2)/

√
π)



The distribution of final energies E1: P (E1) = 1
2π

∑4
j=1

∣∣∣ dφ
dE1

∣∣∣
φ=φj(E1)

P (E1) is distributed on (Emin, Emax), it is an even function w.r.t.
Ē1 = (Emin + Emax)/2, and has 1/

√
x singularity at Emin = Ē1 − µ

√
2 and

Emax = Ē1 + µ
√

2.
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The result: P (E1) = 1

π
√

2µ2−x2
, where x = E1 − Ē1



Another way of deriving P (E1), employing the characteristic function:

f(y) =
∫∞
−∞ eiyxP (x)dx

n-th derivative at y = 0 is: f (n)(0) =
∫∞
−∞(ix)nP (x)dx = inσn

and σn is n-th moment of P (x) (in particular: σ2 = µ2), namely:
σn =

∫∞
−∞ xnP (x)dx

Taylor expansion f(y) =
∑∞

n=0
f (n)(0)

n! yn

gives: f(y) =
∑∞

m=0
i2mµ2m(2m−1)!!

m!(2m)! y2m

and taking into account formula (2m− 1)!! = (2m)!/(2mm!), we get

f(y) =
∑∞

m=0

(
−µ2y2

2

)m
1

(m!)2

which can be summed and we obtain the Bessel function: f(y) = J0(µy
√

2)



Now we only invert the Fourier transform, namely

P (x) = 1
2π

∫∞
−∞ e−iyxf(y)dy = 1

2π

∫∞
−∞ e−iyxJ0(

√
2µy)dy

and get: P (E1) = 1

π
√

2µ2−x2
, where x = E1 − Ē1

This is the normalized β(1/2, 1/2) distribution (probability density)
or so-called arcus sinus prob. density.
(We shift the origin of x from 0 to 1/2 and rescale x).

This distribution is universal for the 1D harmonic oscillator,
for the case of uniform canonical ensembles of initial conditions.



The variance: µ2 = (E1 − Ē1)2 = E2
0

2

[(
Ē1
E0

)2

−
(

ω1
ω0

)2
]
≥ 0 is positive definite.

Therefore in full generality: Ē1 ≥ E0ω1/ω0

The final value of the adiabatic invariant (for the average energy!) Ī1 = Ē1/ω1 is
always greater or equal to the initial value I0 = E0/ω0.

In other words, the value of the adiabatic invariant at the mean value of the energy
never decreases, which is a kind of irreversibility statement.

Moreover, it is conserved only for infinitely slow processes T = ∞, which is an ideal
adiabatic process, for which µ = 0.

For periodic processes ω1 = ω0 we see that always Ē1 ≥ E0, so the mean energy
never decreases.

The other extreme to T = ∞ is the instantaneous (T = 0) jump where ω0 switches
to ω1 discontinuously, whilst q and p remain continuous, and this results in
a = d = 1 and b = c = 0, and then we find

Ē1 = E0
2 (ω2

1

ω2
0
+ 1), µ2 = E2

0
8

[
ω2

1

ω2
0
− 1
]2

. Later: ω2
1 = 2ω2

0, and µ2/E2
0 = 1/8.



The calculation of the transition map:

Consider two linearly independent solutions ψ1(t) and ψ2(t) of q̈ + ω2(t)q = 0 and
introduce the matrix

Ψ(t) =
(

ψ1(t) ψ2(t)
Mψ̇1(t) Mψ̇2(t)

)
.

Consider a solution q̂(t) such that q̂(t0) = q0, ˙̂q(t0) = p0/M .

Because ψ1 and ψ2 are linearly independent, we can look for q̂(t) in the form

q̂(t) = Aψ1(t) +Bψ2(t).

Then A and B are determined by

(
A
B

)
= Ψ−1(t0)

(
q0
p0

)
.

Let q1 = q̂(t1), p1 = M ˙̂q(t1). Then the transition map arises as follows:(
q1
p1

)
= Ψ(t1)Ψ−1(t0)

(
q0
p0

)
⇒ Φ =

(
a b
c d

)
= Ψ(t1)Ψ−1(t0).



3. Some exactly solvable special cases: Linear, harmonic and analytic

3.1 The linear model: class C0

We assume that function ω2(t) is a piecewise linear function of the form

ω2(t) =


ω2

0 if t ≤ 0

ω2
0 + (ω2

1−ω2
0)

T t if 0 < t < T
ω2

1 if t ≥ T

. (2)

Thus ω(t) has discontinuous first derivative at t = 0 and t = T , and belongs to the
class C0. Introducing the notation ã = ω2

0, b̃ = ω2
1 − ω2

0 we obtain that on the
interval (0, T ) the equation has the form

q̈ + (ã+
b̃t

T
)q = 0. (3)

Two linear independent solutions are given by the Airy functions:

ψ1(t) = Ai( b̃t+ãT
b̃2/3T 1/3) and ψ2(t) = Bi( b̃t+ãT

b̃2/3T 1/3).





For ω2
0 = 1, ω2

1 = 2, E0 = 1, using the asymptotic expansion of Abramowitz, we
obtain the following approximation

(E1 − Ē1)2 ≈
ε2

128

(
9− 4

√
2 cos(

4− 8
√

2
3 ε

)

)
, (4)

where we introduce the adiabatic parameter ε = 1
T .
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0.0002

(E1 − Ē1)2 for 0 < ε < 0.05; the lines of the exact expression and the asymptotics practically

coincide; the non-oscillating thin line is the parabola y = 9
128ε

2.
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(E1 − Ē1)2 for 0 < ε < 1.2; the lines of the exact expression (full) and of the asymptotics (dashed)

practically coincide for ε ≤ 0.3; the non-oscillating thin line is the parabola y = 9
128ε

2. One can show

that µ2 goes to 1/8 = 0.125 when ε →∞, which means T → 0, which means the instantaneous

jump of ω0 = 1 to ω1 =
√

2.



3.2 The harmonic model: class C1

ω2(t) =


ã if t ≤ 0
b̃− (b̃− ã) cos(π t

T ) 0 < t < T

2b̃− ã if t ≥ T

, (5)

where ã = ω2
0, 2b̃− ã = ω2

1.

Then the Newton equation has the form

q̈ +
(
b̃− (b̃− ã) cos

(
πt

T

))
q = 0 (6)





It can be solved in terms of Mathieu functions.
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We show, for the harmonic model of subsection 3.2, (E1 − Ē1)2 for 0 < ε < 0.1. The exact result

is represented by the full line, whilst the dashed curve is the curve 0.056 ε4
(
41 + 9 cos(2.78

ε )
)
,

obtained by the WKB method.



The analytic model: class C∞: ω2(t) = 1+a eαt

1+eαt
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The variance (E1 − Ē1)2 of the energy for the analytic model, for 0.03 < ε < 0.05. The dashed

curve is approximation y = 4.174e−0.634/ε.





4. Application of the WKB method for the calculation of the transition map

4.1 General and exact considerations

Since the adiabatic limit ε→ 0 is the asymptotic regime that we would like to
understand, the WKB method seems to be the most suitable approach. We are able
to work out WKB terms to all orders, and in that sense the theory so far is exact. In
practice, however, very often the few leading terms are sufficient, or even just the
leading term.

We introduce re-scaled and dimensionless time λ: λ = εt, ε = 1/T ,

so that q̈ + ω2(t)q = 0 is transformed to the equation: ε2q′′(λ) + ω2(λ)q(λ) = 0.

Let q+(λ) and q−(λ) be two linearly independent solutions: Then

Ψλ =
(

q+(λ) q−(λ)
εMq′+(λ) εMq′−(λ)

)
(7)

and taking into account that λ0 = εt0, λ1 = εt1 we obtain for the matrix the
expression



Φ =
(
a b
c d

)
= Ψλ(λ1)Ψ−1

λ (λ0). (8)

We now use the WKB method in order to obtain the coefficients a, b, c, d of the
matrix Φ. To do so, we look for solution in the form q(λ) = w exp

{
1
εσ(λ)

}
where σ(λ) is a complex function that satisfies the differential equation

(σ′(λ))2 + εσ′′(λ) = −ω2(λ)

and w is some constant with dimension of length.

The WKB expansion for the phase is σ(λ) =
∑∞

k=0 ε
kσk(λ). Substituting and

comparing like powers of ε gives the recursion relation

σ′20 = −ω2(λ), σ′n = − 1
2σ′0

(
n−1∑
k=1

σ′kσ
′
n−k + σ′′n−1). (9)



Here we apply our WKB notation and formalism from our work (Robnik and
Romanovski 2000, [10]) and we can choose
σ′0,+(λ) = iω(λ) or σ′0,−(λ) = −iω(λ). That results in two linearly independent
solutions given by the WKB expansions with the coefficients

σ0,±(λ) = ±i
∫ λ

λ0

ω(x)dx, σ1,±(λ) = −1
2

log
ω(λ)
ω(λ0)

, (10)

σ2,± = ± i
8

∫ λ

λ0

3ω′(x)2 − 2ω(x)ω′′(x)
ω(x)3

dx, . . . (11)

Since ω(λ) is a real function we deduce that all functions σ′2k+1 are real and all
functions σ′2k are pure imaginary and σ′2k,+ = −σ′2k,−, σ′2k+1,+ = σ′2k+1,− where
k = 0, 1, 2, . . ., and thus we have σ′+ = A(λ) + iB(λ), σ′− = A(λ)− iB(λ) where
A(λ) =

∑∞
k=0 ε

2k+1σ′2k+1(λ), B(λ) = −i
∑∞

k=0 ε
2kσ′2k,+(λ).

Integration of the above equations yields σ+ = r(λ) + is(λ), σ− = r(λ)− is(λ),

where r(λ) =
∫ λ

λ0
A(x) dx, s(λ) =

∫ λ

λ0
B(x) dx.



Below we shall denote s1 = s(λ1).

To simplify the expressions let us denote A0 = A(λ0), A1 = A(λ1), B0 = B(λ0) and
B1 = B(λ1).

After a long calculation we obtain:

α+ β =
1

B0B1

[
sin2

(s1
ε

)(B2
0B

2
1

ω2
0

+ ω2
1

)
+ cos2

(s1
ε

)(
B2

0

ω2
1

ω2
0

+B2
1

)
+

sin2
(s1
ε

)(
A2

0

ω2
1

ω2
0

+
A2

0A
2
1

ω2
0

+
2A0A1B0B1

ω2
0

+A2
1

)
+ (12)

cos2
(s1
ε

)(A2
0B

2
1

ω2
0

+
A2

1B
2
0

ω2
0

− 2A0A1B0B1

ω2
0

)
+

sin
(s1
ε

)
cos
(s1
ε

)
×(

−2A0B0
ω2

1

ω2
0

+ 2A1B1 +
2
ω2

0

(A0A1 +B0B1) (A0B1 −A1B0)
)]

.



Solving the WKB recurrence equation for the differential equation:

ε2q′′(λ) + ω2(λ)q(λ) = 0

with the ansatz: q(λ) = w exp[1εσ(λ)]

yielding: (σ′(λ))2 + εσ′′(λ) = Q(λ) = −ω2(λ)

and expanding : σ(λ) =
∑∞

k=0 ε
kσk(λ)

gives: σ′20 = −ω2(λ), σ′n = − 1
2σ′0

(
∑n−1

k=1 σ
′
kσ
′
n−k + σ′′n−1)

The solution is (proof by induction):

Following our work (Robnik in Romanovski 2000 J.Phys.A 33 5093)

Let M = ∪∞k=1N
k, N is the set of non-negative integers. We define the map

L : M → N by

L(ν) = 1 · ν1 + 2 · ν2 + . . .+ l · νl (13)



and denote by L(ν) = m the equation

L(ν) = 1 · ν1 + 2 · ν2 + . . .+m · νm = m, (14)

with m ∈ N, ν ∈M . For a vector ν = (ν1, . . . , νl) ∈M we denote
Q(ν) = (Q′)ν1(Q′′)ν2 . . . (Q(l))νl, |ν| = ν1 + . . .+ νl and let ν(i) (i = 1, . . . , l− 1) be
the vector (ν1, . . . , νi + 1, νi+1 − 1, . . . , νl). The functions σ′m are of the form:

σ′m =
∑

ν:L(ν)=m

UνQ
m−|ν|Q(ν)

Q
3m−1

2

, (15)

where the coefficients Uν satisfy the recurrence relation

Uν = 1
2

∑
µ,θ 6=0,µ+θ=ν UµUθ +

(4−L(ν)−2|ν|)U(ν1−1,ν2,...,νl)

4 +
∑l−1

i=1

(νi+1)Uν(i)

2

with U0̄ = −1 and we put Uα = 0 if among the coordinates of the vector α there is a
negative one.



4.2 Leading asymptotic terms in the power expansion in terms of ε

So far the result is exact. Let us consider the first order WKB approximation, which
is the generic case, that is

A(λ) ≈ εσ′1,+(λ), B(λ) ≈ σ′0,+(λ)

i = ω(λ).

Substituting these values of A(λ) and B(λ) we find, E1 = E0(α+ β)/2:

α+ β = 2ω1
ω0

+ ε2

ω1ω′(λ0)
2

4ω5
0

−
cos

2
∫ λ1
λ0

ω(x) dx

ε

ω′(λ0)ω
′(λ1)

2ω3
0ω1

+ ω′(λ1)
2

4ω0ω3
1

+O(ε3).

µ2

E2
0

= (∆E1)2

E2
0

= 1
2

[(
Ē1
E0

)2

−
(

ω1
ω0

)2
]

=

ε2

ω2
1ω′(λ0)

2

8ω6
0

−
cos

2
∫ λ1
λ0

ω(x) dx

ε

ω′(λ0)ω
′(λ1)

4ω4
0

+ ω′(λ1)
2

8ω2
0ω2

1

+O(ε3).



4.3 Further simplifications of the general formula for the leading terms

The special cases: If all derivatives at λ0 and λ1 vanish up to order (n− 1)

ω′(λ0) = . . . = ω(n−1)(λ0) = ω(n−1)(λ1) = 0, ω(n)(λ0)ω(n)(λ1) 6= 0.

then using our theory from (Robnik and Romanovski 2000,[10]) we find:

µ2

E2
0

= (∆E1)2

E2
0

= ε2n

22n+1

(
ω2

1(ω
(n)
0 )2

ω
2(n+2)
0

+ (ω
(n)
1 )2

(ω1)2nω2
0
− 2 ω

(n)
0 ω

(n)
1

ωn+3
0 ωn−1

1

cos
(
2s1
ε

))
+O(ε2n+1).

In the special case n = 1 we recover previous formula.

We see:

Theorem:

If ω(t) is of class Cm, meaning having m-th continuous derivative, then µ2 is
oscillating as ε→ 0 but in the mean goes to zero as a power µ2 ∝ ε2(m+1).

This achievement demonstrates the power of the WKB method.



If ω(t) is an analytic function on the real time axis (−∞,+∞), the decay to zero is
oscillating and on the average is exponential ∝ exp(−const/ε) or ∝ exp(−const.T )

Let us now summarize our results for the variance µ2 as a function of ω(t) embodied
in the exact general formulae above.

If ω(t) is analytic between t0 and t1 ≥ t0 then the main equation above applies, and
as we see µ2 is dominated by the switch-on and switch-off events at t0 and t1,
respectively. However, the smaller the jump in the derivatives of ω(t) at the two
points, the smaller will be the power law contribution. Indeed, if t0 and t1 go to −∞
and +∞, respectively, and if ω(t) is analytic on the entire interval, then the
behaviour is exponential at sufficiently large ε ≥ εc, but a power law at small ε ≤ εc.

If ω(t) has nonanalyticities at discerte points, then the WKB calculation must be
done on the corresponding subintervals and then one has to multiply the
corresponding transition matrices.

In other words, if ω(t) is analytic everywhere, the µ2(ε) is exponential everywhere,
and in all other cases it is a power law.



5. Periodic ω(t)

If ω(t) is periodic with period τ but otherwise completely general we can state some
general rigorous results.

ω0 at time t0 and ω1 at time t1 = t0 + τ are equal

Because µ2/E2
0 = 1

2

[(
Ē1
E0

)2

− 1
]

we see that Ē1 is always greater than E0, that is, in a period τ , or any integer
multiple of it, T = nτ , the mean energy Ē1 never decreases.

If we denote by Φ1 the transition map for one period, then the transition map Φn for
an interval of exactly n periods of length τ is simply a power of Φ1,

Φn = Φn
1 .

If we use units such that ω0 = ω1 = 1 and M = 1, then elegantly

Ē1 = E0
2 (α+ β) = E0

2 (a2 + b2 + c2 + d2) = E0
2 Tr(ΦΦT )



Let us decompose: Φ1 = WDW−1 and S = TrΦ1

W is the transformation matrix and D is the diagonal matrix (e1, e2):

e2 − eS + 1 = 0 and e1 = 1/e2 = S
2 ±

√(
S
2

)2 − 1.

Then we have: Φ = Φn = Φn
1 = WDnW−1.

Ē1 ≈ KE0e
2n
1 and µ2 = (∆E1)2 ≈ 1

2Ē1
2 ≈ K2

2 E
2
0e

4n
1 .

The contour K0 is topologically always a circle, it evolves into the closed curve Kn

after the n-th full period, with the preserved, constant, area enclosed by Kn.

If |S| < 2, Kn is rotating and oscillating with n.

If |S| > 2, Kn is exponentially stretched in direction e1 > 1 and contracted in
direction e2 < 1 with n.

The energy of the individual initial condition will be exponentially increasing for any
initial condition, except for the case when (q0, p0) is exactly in the direction e2.



6. General formula for the energy evolution

We consider an exact expression for the evolution of the energy distribution by
studying a decomposition of one adiabatic process into several consecutive adiabatic
processes.

The energy distribution P (E1) evolved from the original delta-like distribution
δ(E − E0) is a kind of a Green function for the energy evolution. Let us denote it by
G(E1;E0).

If we have a spread of initial energies w(E0), the final energy distribution is
P (E1) =

∫
G(E1;E0)w(E0)dE0.

Thus by knowing G, which we call G-function, we can calculate the final energies of
any family w(E0) of uniform canonical ensembles of initial conditions.

If the adiabatic process is ideal adiabatic, then the G-function is a delta function,
G(E1;E0) = δ(E1 − ω1E0/ω0).

For ensembles of other types, which are not uniform canonical, we must go back to
our fundamental equation and perform the averaging using the distribution in space
(E0, φ).



Now suppose that the interval of length T is divided into an arbitrary number of
finite subintervals (tj, tj+1), where t0 is the beginning of the process (interval) and tn
is the end of the process, and j = 0, 1, . . . , n− 1.

The behaviour of ω(t) inside each j-th subinterval is so far assumed to be entirely
arbitrary, but the process must be such that at each integration step tj the
distribution is uniform canonical. This condition is certainly satisfied if the process is
ideal adiabatic, in general not.

It is then obvious that the energy G-function G(E;E0) for the complete process
divided into n subintervals is given by the multiple integral

G(E;E0) =∫
. . .

∫
︸ ︷︷ ︸

n−1

Gn(E;xn−1)Gn−1(xn−1;xn−2) . . . G1(x1;E0)dxn−1 . . . dx2dx1

All moments of the final distribution can be easily calculated as they are all fully
determined by the first moment alone.



The first moment of any G(E;E0) is a linear function of the initial value E0, namely

Ē =
∫
EG(E;E0)dE = gE0

where the constant g = (α+ β)/2 is a constant independent of E0 and is determined
by the nature of ω(t) inside the relevant interval of evolution. We shall call g the
g-factor of G.

We see: g = gngn−1 . . . g2g1, Ē = gE0 = gn . . . g2g1E0.

Obviously, for an ideal adiabatic process where each gj = ωj/ωj−1, the above
equation is certainly satisfied.



It is possible also to show the converse [31]: If the composition formula is true for
any intermediate points of integration tj and xj, then the process must be ideal
adiabatic, implying that

G(Ej;Ej−1) = δ(Ej − ωjEj−1/ωj−1)

applies for all j, and gj = ωj/ωj−1. This can be shown by splitting the time interval
(t0, tn) into infinitesimal subintervals and using a piecewise constant function to
approximate ω(t), and then using gj = 1

2(ω
2
j/ω

2
j−1 + 1) from equation jump equation

for all j, finally evaluating g by the previous factorization formula, and finding
g = ωn/ω0, which implies that the process is ideal adiabatic at all times of the time
interval, because µ2 = 0.

The composition formula (factorization property of the G-function) will apply also in
nonlinear systems, but the relationship between Ē1 and E0 is then no longer linear.
Therefore using the composition formula for infinitesimal intervals, and
approximating ω(t) by piecewise constant or piecewise linear functions etc. might be
of extreme importance to find new global powerful approximations for G-functions
and their moments.

The theory for nonlinear systems is left open for the future work.



7. Discussion and conclusions

• We have studied the time evolution of the energy in a general time-dependent 1D
harmonic oscillator in a rigorous way, and then also calculated the final energy
distribution P (E1) for a uniform canonical ensemble of initial conditions at energy
E0.

• P (E1) is universal and does not depend on the details of ω(t):

P (E1) = 1

π
√

2µ2−x2
, where x = E1 − Ē1

• We have calculated all moments of P (E1): Odd moments are exactly zero, the
even moments are powers of the variance µ2, which in turn is a function of the first
moment Ē1. Therefore everything is determined by the first moment Ē1.

• The analysis clearly shows when the adiabatic invariant I(t) = E(t)/ω(t) is
conserved or not. In the adiabatic limit T →∞ it is conserved. If it is not conserved,
when T is finite, we calculate µ2 6= 0 using WKB method analytically in closed form.

• We have also studied three specific solvable models and shown that the leading
WKB term well describes the behaviour of µ2 when ε = 1/T goes to zero.



• We have also shown what happens if ω(t) is smooth and of class Cm, having m
continuous derivatives: µ2 oscillates as ε goes to zero, but in the mean vanishes as
∝ ε2(m+1).

• If ω(t) is analytic, thus it also is of class C∞, it is known from the literature that
µ2 must decay exponentially ∝ exp(const/ε).

• If ω(t) is periodic, Ē1 can grow exponentially, and so does the variance µ2, in
which case I(t) = E(t)/ω(t) is not conserved, but we can describe the system.

• We have introduced the so-called G-function, which is a kind of a Green function
for the evolution of the energy and derived a composition formula for it when the
interval of evolution is decomposed into a finite number of subintervals, for which the
corresponding Gj-function is known for all subintervals j.

This formula applies also to nonlinear systems and might be a good starting basis to
describe them. The theory for nonlinear systems remains open and is a subject of the
current research (Robnik and Romanovski 2000, [10]).

Knowing the G-function we can calculate P (E1) also for other families of initial
uniform canonical ensembles with energy spread w(E0).
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