Quantum Measurement without Schrödinger cat states

Dominique Spehner & Fritz Haake

Maribor, 03.07.08

why never interferences from $\varphi_1|q_1$) + $\varphi_2|q_2$)

9

"axiom"

if observable $\hat{\xi} = \sum_{n} \xi_{n} |n\rangle \langle n|$ measured for pure state $|\phi\rangle = \sum_{n} \phi_{n} |n\rangle$ single run yields some unpredictable ξ_n many runs: ξ_n with probability $|\varphi_n|^2$ ensemble left in mixed state $\sum_{n} |\varphi_{n}|^{2} |n\rangle \langle n|$ old lore: collapse of pure state to mixture

incompatible with unitary time evolution

state-of-the-art lore

"axiom" degraded to solution of Schrödinger eqn for object and apparatus

exactly solvable models reveal:

different ξ_n entangled with macroscopically distinct pointer displacements

decoherence of different pointer displacements

simplest model

$$H = \mu_{O} + \mu_{P} + \mu_{B} + H_{OP} + H_{PB}$$

$$f_{entanglement}$$

$$\rho_{OPB}(0) = |\varphi\rangle\langle\varphi| \otimes \rho_{PB}(0)$$
decoherence

exactly solvable if harmonic oscillators for P and B and suitable choices for the interactions
for now, forget exact solution, assume entanglement
and decoherence fastest

initially thermal pointer

if pointer harmonic oscillator, initially thermal,

rms pointer displacement $\Delta q = \sqrt{kT/m\omega} \approx 10^{-10} m$

de Broglie wavelength $\lambda = \hbar / \sqrt{mkT} \approx 10^{-22} m$

for
$$m = 1g$$
, $\omega = 1 \sec^{-1}$, $T = 300K$

that's a macroscopic pointer!

entanglement

Schrödinger cat state

would be produced by H_{OP} alone, different ξ_n entangled with macroscop'ly distinct pointer displmts

$$\mathbf{e}^{-\mathrm{i}\varepsilon\hat{\xi}\hat{p}\tau/\hbar}|\varphi\rangle\otimes|0) \\ = \sum_{n}\varphi_{n}|n\rangle\otimes e^{-\mathrm{i}\varepsilon\xi_{n}\hat{p}\tau/\hbar}|0) \equiv \sum_{n}\varphi_{n}|n\rangle\otimes|q_{n})$$

 $(0 | e^{+i\epsilon\xi_n\hat{p}\tau/\hbar}\hat{q}e^{-i\epsilon\xi_n\hat{p}\tau/\hbar}|0) = (0 | \hat{q} | 0) + \epsilon\xi_n\tau \equiv q_n$

ετ must be so large that $|q_n - q_m| \gg \Delta q, \lambda$ and that $|q_n - q_m|$ cannot be blurred by pointer reading

decoherence

by pointer-bath interaction $H_{PB} = \hat{q}\hat{B}$

bath coupling agent **B** must contain many additive terms

for oscillator bath, $\hat{B} = \sum_{\mu} \varepsilon_{\mu} \hat{q}_{\mu}$, with \hat{q}_{μ} coordinate of μ -th oscillator

such interaction decoheres macroscopic superposition to mixture

for preliminary discussion, let H_{PB} be switched on only after entanglement and act exclusively; bath uncorrelated with object and pointer initially

$$(q \mid \operatorname{Tr}_{B} \mathbf{e}^{-\mathbf{i}\hat{q}\hat{B}t/\hbar} \sum_{nm} \varphi_{n} \varphi_{m}^{*} |n\rangle \langle m \mid |q_{n}\rangle \langle q_{m} \mid \rho_{B} \mathbf{e}^{\mathbf{i}\hat{q}\hat{B}t/\hbar} |q'\rangle$$

$$= \sum_{nm} \varphi_{n} \varphi_{m}^{*} |n\rangle \langle m \mid (q \mid q_{n}) \langle q_{m} \mid q'\rangle \left\langle \mathbf{e}^{-\mathbf{i}(q-q')\hat{B}t/\hbar} \right\rangle$$

$$\approx \sum_{nm} \varphi_{n} \varphi_{m}^{*} |n\rangle \langle m \mid (q \mid q_{n}) \langle q_{m} \mid q'\rangle \left\langle \mathbf{e}^{-\mathbf{i}(q_{n}-q_{m})\hat{B}t/\hbar} \right\rangle$$

decoherence factor $\left\langle e^{-i(q_n-q_m)\hat{B}t/\hbar} \right\rangle$

since *B* assumed additive in many pieces, central limit theorem yields Gaussian statistics; let $\langle \hat{B} \rangle = 0$

$$\left\langle \mathbf{e}^{-\mathbf{i}(q_n-q_m)\hat{B}t/\hbar} \right\rangle = \mathbf{e}^{-(q_n-q_m)^2 \langle \hat{B}^2 \rangle t^2/2\hbar^2} = \mathbf{e}^{-(t/\tau_{dec})^2}$$
$$\tau_{dec} = \frac{\hbar\sqrt{2}}{|\vec{q}_n-\vec{q}_m|\sqrt{\langle \hat{B}^2 \rangle}}$$

after exceedingly small time, off-diagonal terms negligible, while diagonal terms remain constant in time

measurement complete

after object-pointer entanglement and decoherence

$$\rho_{OP} \sim \sum_{n} |\varphi_{n}|^{2} |n\rangle \langle n| \otimes |q_{n}\rangle (q_{n}|)$$

macroscopic mixture: different eigenstates of measured observable uniquely correlated with macroscopically distinct pointer displacements;

no relative coherence left, only probabilities!

generalization

$$\tau_{ent} \ll \tau_{dec} \ll \tau_{O,P,B}$$

thus far assumed:

pointer & bath initially uncorrelated

more realistic

 $\tau_{ent}, \tau_{dec} \ll \tau_{O,P,B}$

even better

 $\tau_{ent}, \tau_{dec}, \tau_B \ll \tau_{O,P}$

and pointer & bath in mutual equilibrium initially

$$\tau_{ent}, \tau_{dec} \ll \tau_{O,P,B}$$

concurrence of entanglement & decoherence

$$H_{OP} + H_{PB} = \varepsilon \hat{\xi} \hat{p} + \hat{q} \hat{B}$$
 no problem:

 $\mathbf{e}^{-\mathrm{i}(\varepsilon\xi\hat{p}+\hat{q}B)t/\hbar} = \mathbf{e}^{-\mathrm{i}\xi\hat{p}t/\hbar} \mathbf{e}^{-\mathrm{i}\hat{q}Bt/\hbar} \mathbf{e}^{-\mathrm{i}\varepsilon\xi^{2}\hat{B}/2\hbar}$

essentially same discussion, but now mixture of macroscopically distinct states arises directly, without detour through superposition à la Schrödinger cat

$\tau_{ent}, \tau_{dec}, \tau_B \ll \tau_{O,P}$

concurrence of entanglement, decoherence & bath correlation decay

$$\mathbf{e}^{-\mathbf{i}(H_B+\varepsilon\xi\hat{p}+\hat{q}B)t/\hbar} \sim \mathbf{e}^{-\mathbf{i}H_Bt/\hbar} \mathbf{e}^{-\mathbf{i}\xi\hat{p}t/\hbar} \left(\mathbf{e}^{-\mathbf{i}\int_0^t d\tau(\hat{q}+\varepsilon\xi\tau)\hat{B}(\tau)/\hbar} \right)_+$$

if B and H_B both sums of many independent terms, central limit theorem still applies

essentially same discussion

mutual equilibrium of pointer and bath initially

$$e^{-\beta(H_B+H_P+\hat{q}\hat{B})} \sim e^{-\beta H_P/2} e^{-\beta(H_B+\hat{q}\hat{B})} e^{-\beta H_P/2}$$

high-temperature limit, excellent approximation for macroscopic pointer, relative error $O(\hbar^2 \beta^2 / \tau_P^2)$

essentially same discussion

final embellishment: drop harmonic oscillator potential for pointer in favor of

V(q) with ``metastable'' dip at q=0, finite width and barrier height a little larger than $1/\beta$, and lower flatland outside

then object-pointer interaction only has to get pointer out of dip; amplification of pointer displacements achieved by V(q)

Q: why does single run yield unpredictable single pointer displacement?

A: transition probability for $|q_m\rangle \rightarrow |q_n\rangle$

for oscillator model is exponentially small like

$$e^{-|q_n-q_m)|^2/\Delta q^2}$$
, $e^{-|q_n-q_m)|^2/\lambda^2}$,

therefore no transitions between different characteristic pointer displacement after decoherence time conclusion

measurement demystified:

what used to be an axiom for the founders of QM has become a well understood consequence of Schrödinger's equation for compound dynamics

M. Zukowski, F. Haake, PRA 47, 2506 (1993)

W. T. Strunz, F.Haake, and D. Braun, PRA 67, 022101 (2003)

W.T. Strunz, F.Haake, PRA 67, 022102 (2003)

D. Spehner, F.Haake,J. Phys. A 41, 07202 (2008) (letter version),Phys. Rev. E77, 052114 (2008) (full version)