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We use the bailout embeddings of three-dimensional volume-preserving maps to study qualitatively the dy-
namics of small spherical neutrally buoyant impurities suspended in a time-periodic incompressible fluid flow.
The accumulation of impurities in tubular vortical structures, the detachment of particles from fluid trajectories
near hyperbolic invariant lines, and the formation of nontrivial three-dimensional structures in the distribution
of particles are predicted.
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The dynamics of small spherical particles immersed in a
fluid flow have received considerable attention in the past few
years from both the theoretical and experimental points of
view. On one hand, these particles are the simplest models
for impurities whose transport in flows is of practical interest
to understand, and, on the other, their motion is governed by
dynamical systems that display a rich and complex variety of
behavior even in the case of the most minimal approximations.

When the density of the particles does not match that of
the fluid, it is intuitively clear that the trajectories of a particle
and a fluid parcel will in general differ. This has been demon-
strated in two-dimensional flows in which particles with den-
sity higher than the basic flow tend to migrate away from
the parts of the flow dominated by rotation — in the case
of chaotic flows, the KAM (Kolmogorov–Arnold–Moser) is-
lands — while particles lighter than the fluid display the op-
posite tendency [1–3]. A more surprising result, however, is
that neutrally buoyant particles may also detach from the fluid
parcel trajectories in the regions in which the flow is domi-
nated by strain, with the result that they end up settling in the
KAM islands [4]. The subtle dynamical mechanism respon-
sable for the latter phenomenon has suggested a method to
target KAM islands in Hamiltonian flows, and a recent gener-
alization named a bailout embedding permits its extension to
Hamiltonian maps as well [5].

Despite its obvious importance from the point of view
of applications, the case in which the base flow is three-
dimensional has been much less investigated. A probable rea-
son for this is the fact that very few simple three-dimensional
incompressible flow models exist. The few that are sim-
ple are not realistic — e.g., the ABC (Arnold–Beltrami–
Childress) flow [6] — and the few that are realistic are far
more complex. In the study of the Lagrangian structure of
three-dimensional incompressible time-periodic flows, where
this difficulty was already present, the alternative approach of
qualitatively modeling the flows by iterated three-dimensional
volume-preserving maps was successful in predicting funda-
mental structures that were later found in more realistic theo-
retical flows and in experiments [7–10]. However, no similar
approach has been followed to describe the motion of impuri-
ties in this kind of flows.

This Letter has the dual purpose of extending the idea of
bailout embedding to a class of dynamical systems outside
the Hamiltonian domain, namely three-dimensional volume-
preserving maps, and by means of this embedding investigat-
ing the generic structures that one might expect in the dynam-
ics of neutrally buoyant particles suspended in incompressible
three-dimensional time-periodic flows.

Let us first recall the equation of motion for a small, neu-
trally buoyant, spherical tracer in an incompressible fluid (the
Maxey–Riley equation) [11, 12]. Under assumptions allow-
ing us to retain only the Bernoulli, Stokes drag, and Taylor
added mass contributions to the force exerted by the fluid on
the sphere, the equation of motion for the particle at position� is
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where 
� represents the velocity of the particle, � that of the
fluid, � a number inversely proportional to the Stokes number
of the particle, and � � the Jacobian derivative matrix of the
flow.

The difference between the particle velocity and the veloc-
ity of the surrounding fluid is exponentially damped with neg-
ative damping term  �#�$�%� �&� . In the case in which the flow
gradients reach the magnitude of the viscous drag coefficient,
there is the possibility that the Jacobian matrix � � may ac-
quire an eigenvalue of positive real part in excess of the drag
coefficient. In these instances, the trajectories of the impu-
rities, instead of converging exponentially onto those defined
by 
�'�(� , may detach from them.

For incompressible two-dimensional flows, since the Jaco-
bian matrix is traceless, the two eigenvalues must add up to
zero, which implies that they are either both purely imaginary
or both purely real, mutually equal in absolute value and op-
posite in sign. The result is that the particles can abandon the
fluid trajectories in the neighborhood of the saddle points and
other unstable orbits, where the Jacobian eigenvalues are real,
and eventually overcome the Stokes drag, to finally end up in
a regular region of the flow on a KAM torus dominated by the
imaginary eigenvalues. From a more physical point of view,
this effect implies that the particles tend to stay away of the
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FIG. 1: For a homogeneous distribution of initial conditions we plot only the last 1000 steps of the map evolution for different values of � : (a)
������� (b) ���	�
� (c) ������ ��� (d) ������ � . The images represent the [0,2 � ] cube in the phase space.

regions of strongest strain.
In contrast to the two-dimensional case, in time-dependent

three-dimensional flows the incompressibility condition only
implies that the sum of the three independent eigenvalues must
be zero. This less restrictive condition allows for many more
combinations. Triplets of real eigenvalues, two positive and
one negative or vice versa, as well as one real eigenvalue of
any sign together with a complex-conjugate pair whose real
part is of the opposite sign, are possible. Accordingly, chaotic
trajectories may have one or two positive Lyapunov numbers,
and a richer range of dynamical situations may be expected.

Instead of investigating all these in terms of a given fully
fledged three-dimensional time-periodic model flow, we fol-
low a qualitative approach based on iterated maps that roughly
reproduces the properties of the impurity dynamics in a
generic flow of this kind. In order to construct the map we
first note that the dynamical system governing the behavior
of neutrally buoyant particles is composed of some dynam-
ics within another larger set of dynamics. Equation (1) can
be seen as an equation for a variable � � � 
�  � � which in
turn will define the equation of motion � 
� � � � of a fluid
element whenever the solution of the former be zero. In this
sense we may say that the fluid parcel dynamics is embedded
in the particle dynamics. In reference to the fact that some of
the embedding trajectories abandon some of those of the em-
bedded dynamics, the generalization of this process is dubbed
a bailout embedding [5].

It is rather easy to construct this type of embedding for map
dynamics. Given a map
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a general bailout embedding is given by
������� �� � ������� ����� � ��� � � � ������� �� � ��� � �"! (3)

where � � � � is the so-called bailout function whose proper-
ties determine which trajectories of the embedded map will
be eventually abandoned by the embedding. The particular
choice — naturally imposed by the particle dynamics — of
the gradient as the bailout function in a flow translates in the
map setting to

� � � � �! #"%$ � � �'& (4)

Bailout embeddings have been used to investigate target-
ing of KAM tori in Hamiltonian systems as well as to ex-
plore generic properties of the distribution of small particles
immersed in incompressible two-dimensional fluid flows [5],
which are also of a Hamiltonian nature. Following a simi-
lar approach here leads us to consider the bailout embedding
of a class of non-Hamiltonian systems: three-dimensional
volume-preserving maps. In particular, we chose to represent
qualitatively chaotic three-dimensional incompressible base
flows periodic in time by ABC maps, a family
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where
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that displays all the basic features of interest of the evolution
of fluid flows. Depending on the parameter values, this map
possesses two quasi-integrable behaviors: the one-action type,
in which a KAM-type theorem exists, and with it invariant sur-
faces shaped as tubes or sheets; and the two-action type dis-
playing the phenomenon of resonance-induced diffusion lead-
ing to global transport throughout phase space [7].

Let us now study the dynamics defined by Eqs (3), (4) and
(5). We first concentrate on the cases in which the flow is dom-
inated by one-action behavior. In these we find an interesting
generalization of the behavior already found in two dimen-
sions. Particle trajectories are expelled from the chaotic re-
gions to finally settle in the regular KAM tubes. As an exam-
ple, we take values of 7 , I , and > that lead to almost ergodic
behavior of the fluid map: a single fluid trajectory almost com-
pletely covers the phase space. However, from randomly dis-
tributed initial conditions, the particle trajectories inevitably
visit some hyperbolic regions where they detach from the cor-
responding fluid trajectory. In this fashion they find their way
inside the invariant elliptic structures where they can finally
relax back onto a safe fluid trajectory. In Fig. 1 we show how
a homogeneous distribution of one hundred particles in the
fluid flow, after a large number of stabilization iterations, fi-
nally settles inside the tubular KAM structures for different
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FIG. 2: (a) The evolution of one component of the difference ���
between the particles and the fluid flow velocities as a function of
the number of iterations. (b) An ��� slice of the phase space with
those points where ��� is greater than ��� . The square is the region
[0,2 � ] 	 [0,2 � ].

values of the parameter � . When the value of � decreases,
more random trajectories follow this evolution; more particles
fall into the invariant tubes.

In the two-action case, the eigenvalues of the Jacobian are
very small on large portions of the motion, so that separation
may only occur sporadically during the short time intervals
in which the fluid parcel crosses the fast motion resonances
[7]. Most of the time, particles and fluid parcels follow ex-
ponentially convergent trajectories causing the separations to
be then practically unobservable except for very small values
of � . Most probably, once the particles converge to the fluid
dynamics they remain attached. However, by adding a small
amount of white noise, we can continually force the impurity
to fluctuate around the flow trajectory [13]. From the appli-
cation point of view, this noise may be considered to repre-
sent the effect of small scale turbulance, thermal fluctuations,
etc, but here we will use it only as a dynamical device. With
this, the particles arrive in the neighborhood of the resonances
with a non-negligible velocity mismatch with the fluid that is
considerably amplified during the transit across the resonance.
The measure of this mismatch is then a good detector of the
proximity of the resonance. Let us specifically study the fol-
lowing stochastic iterative system:
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The noise term � � satisfies 
 ��� ��� ! 
 � 
�� � ��� ��� � #" ��� ��� � ��� & (8)

We can recast Eq. (7) into

� ����� �H� � � � � � � �
� ����� �  "+$ � ��� � � ��
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if we define the velocity separation between the fluid and the
particle as � � � � � ���-�  � � � � � � .

Let us illustrate the behavior referred above by studying the
most ergodic two-action case in which all the fluid trajectories
intersect the resonant lines. In Fig. 2a we show how � � grows
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FIG. 3: The temperature amplitude for the one-action, two-action
and most chaotic cases ((a), (c), and (e) respectively), together with
the corresponding slices of the impurity dynamics (histogram) in the
phase space ((b), (d), and (f)). All images are the [0,2 � ] 	 [0,2 � ]
region in the ��� axis, for a slice in the � direction corresponding to
the values � � [0,0.49].

strongly at some points. These points correspond to the cross-
ings of the resonant lines. In Fig. 2b we plot these points in an� 0 slice of the three-dimensional cube, choosing those points
where the value of � � is greater than a certain minimum value
��! . As shown, we recover the resonant structure previously
noted [7, 8].

This is the most primitive way to obtain useful information
from the the noisy particle dynamics. A shrewder analysis
[13] shows how the variance of the separation � � between par-
ticles and fluid trajectories and the variance of the noise � � are
related by a function that only depends on the particular point
of the phase space that we look at, in a sort of temperature
amplitude for the fluctuations of � ,
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This amplitude takes different values at different points of the
flow. At those points that the particle dynamics tries to avoid,
its value increases, so the particle prefers to escape the hot
regions and to fall into the cold ones.

In Fig. 3 we show this phenomenon. First we analyze a
one-action situation showing the temperature amplitude, as
well as the impurity dynamics (Figs 3a and 3b respectively).
Again we use slices of the three-dimensional cube to show
the situation more clearly. Fig. 3a shows the temperature in
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FIG. 4: Stroboscopic sampling ( ��� =1) of the position of 10 particles
initially distributed at random in a flow described by Eq. (11) with� � � , � �	�� � , and � ���
 � . The dots represent the positions of
these particles at the strobing periods 1000 to 2000.

a scaled color code (lighter is hotter). Fig. 3b shows a his-
togram of visits that a single particle pays to each bin of the
space. The agreement between the higher temperature regions
and the less visited ones is evident. Next we plot the same
pictures but in the two-action case studied before (Figs 3c and
3d). Finally, we apply this analysis to a generic chaotic case
where we do not have any information about the phase space
structure. We show in Fig. 3e how the invariant manifolds are
very twisted, and in Fig. 3f how the particles, even so, try to
find the coldest regions of the flow.

In order to show that the above described behavior is not an
artefact of our mapping-based approach, we have performed
analogous simulations using a continuous-time model as a
base flow. Specifically we have considered neutrally buoy-
ant particles immersed in a modified version of the ABC flow,
in which each component of the velocity vector field is si-
nusoidally modulated with a relative phase shift of F�G��
	 and
where � , 0 , and 2 are to be considered ( BP@ED�FQG )
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While a detailed analysis of the dynamical aspects of this
flow is beyond the scope of this Letter, we anticipate that it
shows structures similar to those of the ABC maps, i.e, a com-
plex array of KAM sheets and tubes surrounded by chaotic
volumes. Neutrally buoyant particles evolved according to
the true (simplified) Maxey–Riley equations, Eq. (1), based
on this flow, show exactly the same tendency to accumulate
inside KAM tubes as in the map case. This is depicted in
Fig. 4, where ten particles, initially distributed at random in
the cubic cell, are shown to end up in the interior of two of the
tubes mentioned above.

This confirmation demonstrates the validity of the qual-

itative approach based on the bailout embedding of three-
dimensional volume-preserving maps to describe the dy-
namics of neutrally buoyant particles immersed in three-
dimensional time-periodic incompressible flows. This appli-
cation of the bailout concept is the first to be reported for
a non-Hamiltonian dynamical system. Our approach can be
pursued with two different goals in mind: on one hand, it
contributes to the understanding of the physical behavior of
impurities, and on the other hand, it provides a mathematical
device to learn about the dynamical structures of the base flow
in situations where these are very difficult to elucidate directly.
Notice that both bodies of information are very important to
improve our presently scarce knowledge of the transport prop-
erties of three-dimensional fluid flows.
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