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http://www.um.si/
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Integrability of Lotka Volterra equations

COLIN CHRISTOPHER

School of Computing and Mathematics, Plymouth University
Plymouth PL4 8 AA, United Kingdom

C.Christopher@plymouth.ac.uk

The Lotka Volterra equations in two dimensions form one of the simplest of fami-
lies of non-linear systems. However, their behaviour is still quite rich. We survey
some results old and new on the integrability of these systems - in particular the
existence of algebraic curves and the use of monodromy arguments. We also con-
sider some comparable results for three dimensional Lotka Volterra systems.
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Fractional dynamics. Applications to the study of
some transport phenomena

DANA CONSTANTINESCU

Department of Applied Mathematics, University of Craiova
200585, Craiova, Romania

dconsta@central.ucv.ro

We present basic elements of fractional calculus and the way to use it in dynam-
ical modeling. We derive the fractional transport equation and we analyze some
examples coming from physics (heat transport in fusion plasma experiments [1],
[2], [3]) and economics (dynamics of prices in markets with jumps, growth and
inequality processes, volatility of financial markets [4], [5], [6]). We present a nu-
merical method for solving 2D transport equation and we apply it for the study of
specific transport equations which describe phenomena that occur in tokamaks
[7].

Keywords: Fractional dynamical systems, fractional transport equation, tokamak

References

1. A. V. Chechkin, V. Yu Gonchar, M. Szydlowski, Fractional kinetics for relax-
ation and superdiffusion in a magnetic field. Physics of Plasmas 9 (1) (2002).
78–88.

2. D. del-Castillo-Negrete, P. Mantica, V. Naulin, J. J. Rasmunsen, Fractional
diffusion models of non-local perturbative transport: numerical results and appli-
cation to JET experiments. Nuclear Fusion 48 (2008). 075009.

3. A. Kulberg, G. J. Morales, J. E. Maggs, Comparison of a radial fractional trans-
port model with tokamak experiments. Physics of Plasmas 21 (2014). 032310.

4. A. Cartea, D. del-Castillo-Negrete, Fractional diffusion models of option prices
in markets with jumps. Physica A 374 (2007). 749–763.

5. E. Scalas, The application of continuous-time random walks in finance and eco-
nomics. Physica A 362 (2006). 225–239.

6. R. Vileda Mendes, A fractional calculus interpretation of the fractional volatility
model. Nonlinear dynamics 55 (2009). 395–399.

9



7. D. Constantinescu, M. Negrea, I. Petrisor, Theoretical and numerical aspects of
fractional 2D transport equation. Applications in fusion plasma theory. Physics
AUC 24 (2014). 104–115.

10



Control and optimization techniques for ”jerk” type
circuits

RADU CONSTANTINESCU, CARMEN IONESCU,
EMILIAN PANAINTESCU, IULIAN PETRISOR

Department of Physics, University of Craiova
200585, Craiova, Romania

rconsta@yahoo.com

The paper investigates a specific type of nonlinear dynamical systems repre-
sented by electronic circuits with nonlinear elements, known as Chua circuits
[1]. A diode with a nonlinear intensity-voltage characteristic or other electronic
elements are used as nonlinear elements, and, because of this nonlinearity, the
circuit generates interesting stochastic signals. Such circuits become chaotic os-
cillators and they have important applications in communication technologies,
biology, neurosciences, and in other fields. Despite the simplicity of the circuit,
the system of nonlinear differential equations arising when the electric laws are
written down is very rich in the dynamical states, with interesting transitions
from chaos to regular dynamics. The most general form of the differential system
which corresponds to chaotic circuits in the same class with Chua is:

ẋ = a(y − f(x))

ẏ = bx+ cy − g(x, z)

ż = mz + h(x, y)

In fact, we will study not directly the system from before, but the only one equiv-
alent differential equation of third order which can be obtained from the system.
The equation belongs to the jerk type equations and seems to be very interesting
in respect with the dynamics generated. We will consider the case when:

f(x) = thx; g(x, z) = 0; h(x, y) = 0.

The interest will be given to the problem of controlling the chaotic behavior, in
the sense of synchronization of the irregular and complex dynamics of the circuit
with that of a coupled system which present periodic orbits or steady states. The
main results which will be reported will concern the optimization of the dynamics
using a quadratic control term. Other interesting results concern the possibility
of attaching a Lagrangian function and transforming the equation in a variational
one.
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Keywords: chaos control, synchronization, Chua circuit.
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Increasing divergent solutions to certain systems of
difference equations with delays

JOSEF DIBLÍK

Brno University of Technology
Brno, Czech Republic
diblik.j@fce.vutbr.cz

We consider a homogeneous system of difference equations with deviating argu-
ments in the form

∆y(n) =

q∑
k=1

βk(n)[y(n− pk)− y(n− rk)]

where n ≥ n0, n0 ∈ Z, pk, rk are integers, rk > pk ≥ 0, q is a positive integer,
y = (y1, . . . , ys)

T , y : {n0 − r, n0 − r + 1, . . .} → Rs is an unknown discrete vector
function, s ≥ 1 is an integer, r = max{r1, . . . , rq}, ∆y(n) = y(n + 1) − y(n), and
βk(n) = (βkij(n))si,j=1 are real matrices such that βkij : {n0, n0 + 1, . . .} → [0,∞), and∑q

k=1

∑s
j=1 β

k
ij(n) > 0 for each admissible i and all n ≥ n0. Discussed is the behav-

ior of monotone solutions of this system for n → ∞. The existence of solutions
in an exponential form is proved and estimates of solutions are given. Sufficient
conditions for the existence of unbounded monotone solutions are determined.
The scalar case is discussed as well.
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Local integrability and linearizability of a

3-dimensional quadratic system

MAŠA DUKARIĆ, VALERY G. ROMANOVSKI

CAMTP- Center for Applied Mathematics and Theoretical Physics
University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia

masa.dukaric@gmail.si, valery.romanovsky@uni-mb.si

REGILENE OLIVEIRA

University of São Paolo, Departamento de Matemãtica, ICMC-USP
Caixa Postal 668, 13560-000 São Carlos, Brazil

regilene@icmc.usp.br

We study integrability and linearizability of three dimensional system of the form

ẋ = x+ a12xy + a13xz + a23yz

ẏ = −y + b12xy + b13xz + b23yz

ż = −z + c12xy + c13xz + c23yz.

Necessary and sufficient conditions for existence of two functionally independent
analytic integrals of this system were obtained. For the proof of integrability and
linearizability the method of Darboux and the normal form theory were used.
Some Darboux factors used for linearizability are obtained from first integrals of
systems. The problem of existence of only one analytic first integral was investi-
gated as well.
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Integrability of complex planar systems with
homogeneous nonlinearities

BRIGITA FERČEC

Faculty of Energy Technology, University of Maribor
CAMTP - Center for Applied Mathematics and Theoretical Physics,

University of Maribor
8270 Krško, Slovenia; 2000 Maribor, Slovenia

brigita.fercec@gmail.com

The problem of integrability of systems of differential equations is one of central
problems in the theory of ODE’s. Although integrability is a rare phenomena and
a generic system is not integrable, integrable systems are important in studying
various mathematical models, since often perturbations of integrable systems ex-
hibit rich picture of bifurcations.
In this talk we discuss conditions for the existence of a local analytic first integral
for a family of quintic systems having homogeneous nonlinearities studied in [1],
i.e.

ẋ = x− a40x5 − a31x4y − a22x3y2 − a13x2y3 − a04xy4,
ẏ = −y + b5,−1x

5 + b40x
4y + b31x

3y2 + b22x
2y3 + b13xy

4 + b04y
5,

(1)

where x, y, ajk, bkj are complex variables.

One of important mechanisms for integrability is the so-called time-reversibility
(or just reversibility). We will describe an approach to find reversible systems
within polynomial families of Lotka-Volterra systems with homogeneous nonlin-
earities.

References

1. Ferčec B., Giné J., Romanovski V.G., and Edneral V.F. Integrability of com-
plex planar systems with homogeneous nonlinearities, to appear in Journal
of mathematical analysis and applications.
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Limit cycles for 3-monomial differential equations

ARMENGOL GASULL

Departament de Matemàtiques, Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona, Catalonia, Spain

gasull@mat.uab.cat

We study planar polynomial differential equations that in complex coordinates
write as z′ = Az+Bzkz̄l +Czmz̄n. We prove that for each natural number p there
are differential equations of this type having at least p limit cycles. Moreover,
for the particular case z′ = Az + Bz̄ + Czmz̄n, which has homogeneous non-
linearities, we show examples with several limit cycles and give a condition that
ensures uniqueness and hyperbolicity of the limit cycle. The talk is based on a
joint work with Chengzhi Li and Joan Torregrosa.
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Hidden Lagrangian Constraints and Differential
Thomas Decomposition

VLADIMIR GERDT

Laboratory of Information Technologies
Joint Institute for Nuclear Research

Joliot-Curie 6, 141980 Dubna, Russia
gerdt@jinr.ru

DANIEL ROBERTZ

School of Computing and Mathematics, Plymouth University
2-5 Kirkby Place, Drake Circus, Plymouth PL4 8AA, UK.

Models with singular Lagrangians play a fundamental role in quantum mechan-
ics, quantum field theory and elementary particle physics. Singularity of such
models is caused by local symmetries of their Lagrangians. Gauge symmetry is
the most important type of local symmetries and it is imperative for all physical
theories of fundamental interactions. The local symmetry transformations of a
dynamical (resp. field-theoretical) differential equation relate its solutions satis-
fying the same initial (Cauchy) data. For dynamical systems with only one inde-
pendent variable the initial data include (generalized) coordinates and velocities
whereas for field-theoretical models they include the field variables, their spatial
and the first-order temporal derivatives (’velocities’). The presence of local sym-
metries in a singular model implies that its general solution satisfying the initial
data depends on arbitrary functions.

A distinctive feature of singular Lagrangian models is that their dynamics is gov-
erned by the Euler-Lagrange equations which have differential consequences in
the form of (hidden) constraints for the initial data. This is in contrast to regular
constrained dynamics whose constraints are external with respect to the Euler-
Lagrange equations.

Given a model Lagrangian, it is very important to verify whether it is singular,
and if so to compute the hidden constraints that follow from the Euler-Lagrange
equations. Knowledge of constraints is necessary for the local symmetry analysis,
for well-posedness of initial value problems and for quantization of the model.
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In the present talk we consider Lagrangian models whose Lagrangians (mechan-
ics) and Lagrangian densities (field theory) are differential polynomials. Under
this condition we show that the differential Thomas decomposition, being a char-
acteristic one for the radical differential ideal generated by the polynomials in
Euler-Lagrange equations, provides an algorithmic tool for verification of singu-
larity and for computation of hidden Lagrangian constraints. Unlike the tradi-
tional linear algebra based methodology used in theoretical and mathematical
physics for computation of linearly independent hidden Lagrangian constraints,
our approach takes into account rank dependence of the Hessian matrix on the
dynamical (field) variables and outputs the complete set of algebraically inde-
pendent constraints.
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Some approaches to construction of hierarchies of
Painleve type equations

VALERY GROMAK

Faculty of Mechanics and Mathematics, Belarusian State University
Minsk

Minsk, Belarus
vgromak@gmail.com

The six Painlev’e equations were first discovered in a classification problem of
nonlinear ordinary differential equations. Although Painlev’e equations were
first discovered from strictly mathematical considerations, now they have arisen
in a variety of important physical applications. They possess hierarchies of ra-
tional solutions and one-parameter families of solutions expressible in terms of
the classical special functions, for special values of the parameters. Further the
Painlev’e equations admit symmetries under affine Weyl groups which are re-
lated to the associated Backlund transformations. In the general case the Painlev’e
transcendent may be thought of a nonlinear analogues of the classical special
functions. We discuss different methods for obtaining of hierarchies of differen-
tial equations that are generalizations of the Painlev’e equations, such as Painlev’e
method of small parameter, methods of nonlinear chains and symmetry reduc-
tion of some soliton equations, methods of isomonodromic deformation of linear
systems. In particular, we consider Schlesinger and Garnier equations which are
generalization of the Painlev’e equations and some their solutions.
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On the estimation of limit cycles number for some
planar autonomous systems

ALIAKSANDR HRYN

Department of mathematics and informatics, Yanka Kupala State
University of Grodno

Ozheshko str. 22-309, Grodno, 230023, Belarus
grin@grsu.by

The talk is devoted to the investigation of limit cycles for planar autonomous
systems depending on the real parameter a ∈ J ⊆ R

dx

dt
≡ P (x, y) = y,

dy

dt
≡ Q(x, y, a) =

l∑
j=0

hj(x, a)yj, (2)

l ≥ 1, in some region Ω = {(x, y) : x ∈ I ⊆ R, y ∈ R}, under the assumption that
the functions hj : I × J → R are continuous in the first variable and continuously
differentiable in the second variable.

Our purposes are to derive precise global upper bounds for the number of limit
cycles of (1) and to localize their position as well as to construct systems (1) with
prescribed number of limit cycles. It means that mentioned estimations hold in
the whole region Ω for all a ∈ J .

The main tool for our investigations is Dulac-Cherkas function Ψ(x, y, a) satisfy-
ing the inequality

Φ ≡ kΨdivf +
∂Ψ

∂x
P +

∂Ψ

∂y
Q > 0(< 0), ∀(x, y) ∈ Ω, f = (P,Q) (3)

where 0 6= k ∈ R.

The talk present algorithms for the construction of Dulac-Cherkas functions in the
form Ψ(x, y, a) =

∑n
i=0 Ψi(x, a)yi, n ≥ 1, under the assumption that the functions

Ψi : I×J → R are continuously differentiable in both variables. These algorithms
use analytical and numerical approaches. Their applications are demonstrated
for some classes of system (1) in the cases l = 3 and l = 5 such as generalized
Kukles systems [1] and pendulum systems.
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Applications of commuting graphs

BOJAN KUZMA

Faculty of Mathematics, Natural Sciences and Information Technologies,
University of Primorska

6000 Koper, Slovenia
bojan.kuzma@famnit.upr.si

A commuting graph of an algebra A is a simple graph whose vertex set consists
of all noncentral elements from A and where two disjoint vertices are connected
if the corresponding elements in A commute. We will discuss some problems
related to commuting graphs and review its role in a recent classification of sur-
jective maps which preserve commutativity on n-by-n complex matrices.
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The use of dissipative normal forms and averaging
methods in celestial dynamics

CHRISTOPH LHOTKA

Space Research Institute, Austrian Academy of Sciences
Schmiedlstrasse 6, 8042 Graz, Austria

christoph.lhotka@oeaw.ac.at

Weakly dissipative, nearly integrable dynamical systems are at the core of ce-
lestial dynamics. In this talk we outline two stability theorems in these systems
based on normal form theory. The talk includes real world applications to orbital
and rotational dynamics: motion of dust and rotation of celestial bodies close to
resonance and subject to non-gravitational forces.
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On the equilibrium points of an analytic
differentiable system in the plane. The center–focus

problem and the divergence

JAUME LLIBRE

Departament de Matemàtiques, Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona, Catalonia, Spain

jllibre@mat.uab.cat

We shall recall briefly how can be the local phase portraits of the equilibrium
points of an analytic differential system in the plane, and we shall put our atten-
tion in the center-focus problem, i.e. how to distinguish a center from a focus.
This is a difficult problem which is not completely solved. We shall provide some
new results using the divergence of the differential system.
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Krause’s model of opinion dynamics on time scales

AGNIESZKA MALINOWSKA

Bialystok University of Technology
Bialystok, Poland

a.malinowska@pb.edu.pl

We analyse bounded confidence models on time scales. In such models each
agent takes into account only the assessments of the agents whose opinions are
not too far away from his own opinion. We prove a convergence into clusters of
agents, with all agents in the same cluster having the same opinion. The neces-
sary condition for reaching a consensus is given. Simulations are performed to
validate the theoretical results.
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Finite simple groups that are not spectrum critical

NATALIA V. MASLOVA

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS
Ekaterinburg, Russia
butterson@mail.ru

The spectrum of a finite groupG is the set ω(G) of all element orders ofG. A finite
group G is ω(G)-critical (or spectrum critical) if for any subgroups K and L of G
such that K is a normal subgroup of L, the equality ω(L/K) = ω(G) implies L =
G and K = 1. In [1] the definition of ω(G)-critical group was introduced and the
following question was formulated: IfG is a finite simple group not isomorphic to
PΩ+

8 (2) or PΩ+
8 (3) then G is ω(G)-critical, isn’t it? We have obtained the negative

answer to this question. Moreover, we have proved the following theorem.
Theorem. Let G be a finite simple group and K and L be subgroups of G such
that K is a normal subgroup of L. Then ω(L/K) = ω(G) if and only if K = 1 and
one of the following conditions holds:

(1) G is PSp4(q) and L is PSL2(q
2) < t > where t is a field automorphism of

order 2 of SL2(q
2);

(2) G is PSp8(q) and L is SO−8 (q) where q is even;

(3) G is PΩ+
8 (2) and L is P 7(2);

(4) G is PΩ+
8 (3) and L is P 7(3).

References
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Classifications of parabolic germs and
epsilon-neighborhoods of orbits

MAJA RESMAN

Department of Applied Mathematics, University of Zagreb
10000 Zagreb, Croatia

We consider analytic germs of parabolic diffeomorphisms f : (C, 0) → (C, 0).
The question is if we could recognize a germ using the functions of the (directed)
areas of the epsilon-neighborhoods of its orbits. We show that the formal class
can be read from only finitely many terms in the asymptotic expansion of the
(directed) area function in epsilon. We further discuss analytic properties of this
function. We concentrate on the coefficient of the quadratic term in the expansion,
as a function of the initial point. It satisfies a cohomological equation similar to
the trivialisation equation.
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Statistical properties of one-dimensional
time-dependent Hamiltonian oscillators

MARKO ROBNIK

CAMTP - Center for Applied Mathematics and Theoretical Physics,
University of Maribor

2000 Maribor, Slovenia
robnik@uni-mb.si

Recently the interest in time-dependent dynamical systems has increased a lot. In
this talk I shall present most recent results on time-dependent one-dimensional
Hamiltonian oscillators. The time-dependence describes the interaction of an
oscillator with its neigbourhood. While the Liouville theorem still applies (the
phase space volume is preserved), the energy of the system changes with time.
We are interested in the statistical properties of the energy of an initial micro-
canonical ensemble with sharply defiend initial energy, but uniform distribution
of the initial conditions with respect to the canonical angle. We are in particular
interested in the change of the action at the average energy, which is also adiabatic
invariant, and is conserved in the ideal adibatic limit, but otherwise changes with
time. It will be shown that in the linear oscillator the value of the adiabatic invari-
ant always increases, implying the increase of the Gibbs entropy in the mean (at
the average energy). The energy is universally described by the arcsine distribu-
tion, independent of the driving law. In nonlinear oscillators things are different.
For slow but not yet ideal adiabatic drivings the adiabatic invariant at the mean
energy can decrease, just due to the nonlinearity and nonisochronicity, but never-
theless increases at faster drivings, including the limiting fastest possible driving,
namely parametric kick (jump of the parameter). This is so-called PR property,
following Papamikos and Robnik J. Phys. A: Math. Theor. 44 (2011) 315102, proven
rigorously to be satisfied in a number of model potentials, such as homogeneous
power law potential, and many others, giving evidence that the PR property is
always sastified in a parametric kick, except if we are too close to a separatrix
or if the potential is not smooth enough. The local analysis is possible and the
PR property is formulated in terms of a geometrical criterion for the underlying
potential. We also study the periodic kicking and the strong (nonadiabatic) linear
driving of the quartic oscillator. In the latter case we employ the nonlinear WKB
method following Papamikos and Robnik J. Phys. A: Math. Theor. 45 (2012) 015206
and calculate the mean energy and the variance of the energy distribution, and
also the adiabatic invariant which is asymptotically constant, but slightly higher
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than its initial value. The key references for the most recent work are Andresas et
al (2014), given below.
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Integrability of polynomial systems of ODEs
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The problem of finding systems with one or few independent first integrals inside
families of polynomial systems of ODEs depending on parameters is considered.
Computational approaches for computing necessary conditions of integrability
and invariant surfaces are proposed. Interconnection of time-reversibility and in-
tegrability is discussed and algorithms for finding time-reversible systems inside
of parametric polynomial families are described.
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Description of two-dimensional attractors of some
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We consider a general class of infinite-dimensional dynamical systems, including
dissipative dynamics of Frenkel-Kontorova models (one-dimensional coupled in-
finite chains in a periodic potential), as well as scalar reaction diffusion equations
on infinite domains. We prove that the attractor of these systems is at most 2
dimensional, by introducing a new, topological Lyapunov function on the phase
space. In the examples we numerically show that the fractal dimension of the
attractor in many cases seems to be between 1 and 2.

We use the description of the attractor to give rigorous characterization of dy-
namical (Aubry) phase transition for the dynamics, depending on e.g. forcing
parameter of the system. We distinguish two phases, following the solid state
physics terminology: the pinned and depinned phase, and show that the attrac-
tor in the depinned phase consists of a single limit cycle.
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Normal forms for germs of vector fields with
quadratic leading part. The polynomial first integral

case
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The investigated problem is to find a formal classification of the vector fields of
the form ẋ = ax2 + bxy+ cy2 + . . . , ẏ = dx2 + exy+ fy2 + . . . using formal changes
of coordinates, but not using the change of time. We consider the first case - with
the polynomial first integral. In the proofs we avoid complicated calculations.
The method we use is effective and it is based on the method presented in our
previous work with H. Żoła̧dek, where the case of Bogdanov-Takens singularity
was studied. We consider homological operators, analogues of adV , acting on
transversal and tangential parts of a vector field. The kernels and cokernels of
those operators is used in the several cases which appear here. We provide the
final list of non-orbital normal forms in the considered case.

32



Center, weak-focus and cyclicity problems for planar
systems
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The center-focus problem consists in distinguishing whether a monodromic sin-
gular point is a center or a focus. For singular points with imaginary eigenvalues,
usually called nondegenerate singular points, this problem was already solved by
Poincaré and Lyapunov, see [3]. The solution consists in computing several quan-
tities called commonly the Poincaré–Lyapunov constants, and study whether they
are zero or not.

Despite the existence of many methods, the solution of the center-focus problem
for simple families, like for instance the complete cubic systems or the quartic
systems with homogeneous nonlinearities, has resisted all the attempts. For this
reason, we propose to push on this question in another direction. We study this
problem for a natural family of differential systems with few free parameters but
arbitrary degree. We consider planar systems with a linear center at the origin
that in complex coordinates the nonlinearity terms are formed by the sum of few
monomials. For some families in this class, we study the center problem, the
maximum order of a weak-focus and the cyclicity problem. Several centers inside
this family are done. The list includes a new class of Darboux centers that are also
persistent centers. We study if the given list is exhaustive or not.

For small degrees we provide explicit systems with weak foci or high-order cen-
ters that, after perturbation, give new lower bounds for the number of limit cycles
surrounding a single critical point. These lower bounds are higher than the cor-
responding Hilbert number known until now for these degrees.

The talk will be a review of the results [1,2].
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Fractal analysis of oscillatory solutions of a class of
ordinary differential equations including the Bessel

equation
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In this talk we investigate oscillatority of functions using the fractal dimension.
We apply this approach to some common objects of interest in that subject. These
objects that we investigate, are chirp-like functions, Bessel functions, Fresnel os-
cillatory integrals and some generalizations.

We first, from the point of view of fractal geometry, study oscillatority of a class
of real C1 functions x = x(t) near t = ∞. A fractal oscillatority of solutions of
second-order differential equations near infinity is measured by oscillatory and
phase dimensions, defined as box dimensions of the graph of X(τ) = x( 1

τ
) near

τ = 0 and trajectory (x, ẋ) in R2, respectively, assuming that (x, ẋ) is a spiral con-
verging to the origin. The box dimension of a plane curve measures the accumu-
lation of a curve near a point, which is in particular interesting for non-rectifiable
curves. The phase dimension has been calculated for a class of this oscillatory
functions using formulas for box dimension of a class of nonrectifiable spirals.
Also, the case of rectifiable spirals have been studied. A specific type of spirals
that we called wavy spirals, converging to the origin, but with an increasing radius
function in some parts, emerged in our study of phase portraits.

We further study the phase dimension of a class of second-order nonautonomous
differential equations with oscillatory solutions including the Bessel equation. We
prove that the phase dimension of Bessel functions is equal to 4

3
, and that the

corresponding trajectory is a wavy spiral, exhibiting an interesting behavior. The
phase dimension of that specific generalization of the Bessel equation has been
also computed.

Then we study some other class of second-order nonautonomous differential
equations, and the corresponding planar and spatial systems, again from the
point of view of fractal geometry. Using the phase dimension of a solution of the
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second-order equation we compute the box dimension of a spiral trajectory of the
corresponding spatial system, lying in Lipschitzian or Hölderian surfaces. This
phase dimension of the second-order equation is connected to the asymptotics of
the associated Poincaré map.

Finally, we obtain a new asymptotic expansion of generalized Fresnel integrals
x(t) =

∫ t
0

cos q(s) ds for large t, where q(s) ∼ sp when s→∞, and p > 1. The terms
of the expansion are defined via a simple iterative algorithm. Using this we show
that the box dimension of the related q-clothoid, also called the generalized Euler
or Cornu spiral, is equal to d = 2p/(2p−1). This generalized Euler spiral is defined
by generalized Fresnel integrals, as component functions, where x(t) is as before
and y(t) =

∫ t
0

sin q(s) ds. Furthermore, this curve is Minkowski measurable, and
we compute its d-dimensional Minkowski content.
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Algebraic Computation and Qualitative Analysis of
Dynamical Systems
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In this talk, we provide a brief review of algebraic methods based on resultants,
triangular sets, Groebner bases, quantifier elimination, and real solution classifi-
cation and discuss their applications to the analysis of stability and bifurcations
of dynamical systems. Examples of biological dynamical systems are given to
illustrate the advantages of the presented symbolic computational approach.
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The case CD45 revisited
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In my paper ”Eleven small limit cycles in a cubic vector field” (Nonlinearity 8)
the existence of eleven small amplitude limit cycles in a perturbation of some
special cubic plane vector field with center was proved. I will present a new and
corrected proof of that result.
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Lapidus zeta functions and their applications

DARKO ŽUBRINIĆ
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The theory of ’zeta functions of fractal strings’ has been initiated by the first au-
thor in the early 1990s, and developed jointly with his collaborators during al-
most two decades of intensive research in numerous articles and several mono-
graphs. In 2009, the same author introduced a new class of zeta functions, called
‘distance zeta functions’, which since then, has enabled us to extend the exist-
ing theory of zeta functions of fractal strings and sprays to arbitrary bounded
(fractal) sets in Euclidean spaces of any dimension. A natural and closely related
tool for the study of distance zeta functions is the class of ’tube zeta functions’,
defined using the tube function of a fractal set. These three classes of zeta func-
tions, under the name of ’fractal zeta functions’, exhibit deep connections with
Minkowski contents and upper box dimensions, as well as, more generally, with
the complex dimensions of fractal sets. Further extensions include zeta functions
of relative fractal drums, the box dimension of which can assume negative values,
including minus infinity.
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Fractal analysis of bifurcations of dynamical systems
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In this talk I would like to give an overview of results concerning fractal anal-
ysis of dynamical systems, obtained by scientific group at University of Zagreb
and our collaborators. Bifurcations of limit cycles are related to the 16th Hilbert
problem. It asks for an upper bound or the number of limit cycles, of polynomial
vector fields in the plane, as a function of the degree of the vector field. The prob-
lem is still open. It is of special interest to determine how many limit cycles can
bifurcate from a given limit periodic set in a generic unfolding. This number is
called the cyclicity of the limit periodic set. The cyclicity is classically obtained by
studying the multiplicity of fixed points of Poincaré map. We establish a relation
between cyclicity of a limit periodic set of a planar system and fractal properties
of the Poincaré map of a trajectory of the system. A natural idea is that higher
density of orbits reveals higher cyclicity. The study of density of orbits is where
fractal analysis is applied. Classical fractal analysis associates box dimension and
Minkowski content to bounded sets. They measure the density of accumulation
of a set, see [10].

In the paper [11], the cyclicity of weak foci and limit cycles is directly related to
the box dimension of any trajectory. It was discovered that the box dimension
of a spiral trajectory of weak focus signals a moment of Hopf and Hopf-Takens
bifurcation. The result was obtained using Takens normal form. In [12], box di-
mension of spiral trajectories of weak focus was related to the box dimension of
its Poincaré maps. Results were based on [2] and [3]. This article also shows that
generic bifurcations of 1-dimensional discrete systems are characterised by the
box dimension of orbits. Fractal analysis of Hopf bifurcation for discrete dynam-
ical systems, called Neimark-Sacker bifurcation, has been completed in [4].

In the above continuous cases, the Poincaré map was differentiable, which was
crucial for relating the box dimension and the cyclicity of a limit periodic set. The
problem in hyperbolic polycycle case is that the Poincaré map in not differen-
tiable, but the family of maps in generic bifurcations has an asymptotic develop-
ment in a so-called Chebyshev scale. We introduced in [5] the appropriate gener-
alizations of box dimension, depending on a particular scale for a given problem.
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The cyclicity was concluded using the generalized box dimension in the case of
saddle loops.

The box dimension has been read from the leading term of asymptotic expan-
sion of area of ε-neighborhoods of orbits. If we go further into the asymptotic
expansion we can make formal classification of parabolic diffeomorphisms using
fractal data given in the expansion, see [7], and also [8].

Analogously it is possible to study singularities of maps, see [1]. We study geo-
metrical representation of oscillatory integrals with analytic phase function and
smooth amplitude with compact support. Geometrical and fractal properties of
the curves defined by oscillatory integral depend on type of critical point of the
phase. Methods in [9] include Newton diagrams and resolution of singularities.
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3. L. Horvat Dmitrović, Box dimension and bifurcations of one-dimensional discrete
dynamical systems, Discrete Contin. Dyn. Syst. 32 (2012), no. 4, 1287–1307.
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