ON THE FINITE GROUPS WHICH ARE SPECTRUM MINIMAL, GRUNBERG-KEGEL GRAPH MINIMAL OR PRIME SPECTRUM MINIMAL

N. V. Maslova

IMM UB RAS

Maribor, April 8, 2015

N. V. Maslova On the finite groups

(日) (四) (日) (日) (日)

Recall, a group G is simple if it doesn't contain nontrivial normal subgroups.

Finite simple groups were classified. With respect to this classification, finite simple groups are:

- Alternating groups A_n for $n \ge 5$;
- Classical groups $PSL_n(q)$, $PSU_n(q)$, $PSp_n(q)$ (*n* is even), $P\Omega_n(q)$ (*n* is odd), $P\Omega_n^+(q)$ (*n* is even), $P\Omega_n^-(q)$ (*n* is even):
- Exceptional groups of Lie type: $E_8(q)$, $E_7(q)$, $E_6(q)$, ${}^2E_6(q)$, ${}^3D_n(q)$ (*n* is even), $F_4(q)$, ${}^2F_4(q)$, $G_2(q)$, ${}^2G_2(q)$ (*q* is a power of 3), ${}^2B_2(q)$ (*q* is a power of 2);
- 26 sporadic groups.

N. V. Maslova On the finite groups

イロト イロト イヨト イヨト 三日

Recall, a group G is simple if it doesn't contain nontrivial normal subgroups.

Finite simple groups were classified. With respect to this classification, finite simple groups are:

- Alternating groups A_n for $n \ge 5$;
- Classical groups $PSL_n(q)$, $PSU_n(q)$, $PSp_n(q)$ (*n* is even), $P\Omega_n(q)$ (*n* is odd), $P\Omega_n^+(q)$ (*n* is even), $P\Omega_n^-(q)$ (*n* is even):
- Exceptional groups of Lie type: $E_8(q)$, $E_7(q)$, $E_6(q)$, ${}^2E_6(q)$, ${}^3D_n(q)$ (*n* is even), $F_4(q)$, ${}^2F_4(q)$, $G_2(q)$, ${}^2G_2(q)$ (*q* is a power of 3), ${}^2B_2(q)$ (*q* is a power of 2);
- 26 sporadic groups.

N. V. Maslova On the finite groups

Recall, a group G is simple if it doesn't contain nontrivial normal subgroups.

Finite simple groups were classified. With respect to this classification, finite simple groups are:

- Alternating groups A_n for $n \ge 5$;
- Classical groups $PSL_n(q)$, $PSU_n(q)$, $PSp_n(q)$ (*n* is even), $P\Omega_n(q)$ (*n* is odd), $P\Omega_n^+(q)$ (*n* is even), $P\Omega_n^-(q)$ (*n* is even);
- Exceptional groups of Lie type: $E_8(q)$, $E_7(q)$, $E_6(q)$, ${}^2E_6(q)$, ${}^3D_n(q)$ (*n* is even), $F_4(q)$, ${}^2F_4(q)$, $G_2(q)$, ${}^2G_2(q)$ (*q* is a power of 3), ${}^2B_2(q)$ (*q* is a power of 2);
- 26 sporadic groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recall, a group G is simple if it doesn't contain nontrivial normal subgroups.

Finite simple groups were classified. With respect to this classification, finite simple groups are:

- Alternating groups A_n for $n \ge 5$;
- Classical groups $PSL_n(q)$, $PSU_n(q)$, $PSp_n(q)$ (*n* is even), $P\Omega_n(q)$ (*n* is odd), $P\Omega_n^+(q)$ (*n* is even), $P\Omega_n^-(q)$ (*n* is even);
- Exceptional groups of Lie type: $E_8(q)$, $E_7(q)$, $E_6(q)$, ${}^2E_6(q)$, ${}^3D_n(q)$ (*n* is even), $F_4(q)$, ${}^2F_4(q)$, $G_2(q)$, ${}^2G_2(q)$ (*q* is a power of 3), ${}^2B_2(q)$ (*q* is a power of 2);
- 26 sporadic groups.

◆□▶ ◆□▶ ★□▶ ★□▶ ■ のへの

Recall, a group G is simple if it doesn't contain nontrivial normal subgroups.

Finite simple groups were classified. With respect to this classification, finite simple groups are:

- Alternating groups A_n for $n \ge 5$;
- Classical groups $PSL_n(q)$, $PSU_n(q)$, $PSp_n(q)$ (*n* is even), $P\Omega_n(q)$ (*n* is odd), $P\Omega_n^+(q)$ (*n* is even), $P\Omega_n^-(q)$ (*n* is even);
- Exceptional groups of Lie type: $E_8(q)$, $E_7(q)$, $E_6(q)$, ${}^2E_6(q)$, ${}^3D_n(q)$ (*n* is even), $F_4(q)$, ${}^2F_4(q)$, $G_2(q)$, ${}^2G_2(q)$ (*q* is a power of 3), ${}^2B_2(q)$ (*q* is a power of 2);
- 26 sporadic groups.

◆□▶ ◆□▶ ★□▶ ★□▶ ■ のへの

Recall, a group G is simple if it doesn't contain nontrivial normal subgroups.

Finite simple groups were classified. With respect to this classification, finite simple groups are:

- Alternating groups A_n for $n \ge 5$;
- Classical groups $PSL_n(q)$, $PSU_n(q)$, $PSp_n(q)$ (*n* is even), $P\Omega_n(q)$ (*n* is odd), $P\Omega_n^+(q)$ (*n* is even), $P\Omega_n^-(q)$ (*n* is even);
- Exceptional groups of Lie type: $E_8(q)$, $E_7(q)$, $E_6(q)$, ${}^{2}E_6(q)$, ${}^{3}D_n(q)$ (*n* is even), $F_4(q)$, ${}^{2}F_4(q)$, $G_2(q)$, ${}^{2}G_2(q)$ (*q* is a power of 3), ${}^{2}B_2(q)$ (*q* is a power of 2);
- 26 sporadic groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recall, a group G is simple if it doesn't contain nontrivial normal subgroups.

Finite simple groups were classified. With respect to this classification, finite simple groups are:

- Alternating groups A_n for $n \ge 5$;
- Classical groups $PSL_n(q)$, $PSU_n(q)$, $PSp_n(q)$ (*n* is even), $P\Omega_n(q)$ (*n* is odd), $P\Omega_n^+(q)$ (*n* is even), $P\Omega_n^-(q)$ (*n* is even);
- Exceptional groups of Lie type: $E_8(q)$, $E_7(q)$, $E_6(q)$, ${}^2E_6(q)$, ${}^3D_n(q)$ (*n* is even), $F_4(q)$, ${}^2F_4(q)$, $G_2(q)$, ${}^2G_2(q)$ (*q* is a power of 3), ${}^2B_2(q)$ (*q* is a power of 2);
- 26 sporadic groups.

DEFINITIONS

Let G be a group.

DEFINITION. The spectrum $\omega(G)$ is the set of all element orders of G.

DEFINITION. The prime spectrum $\pi(G)$ is the set of all prime elements of $\omega(G)$ (equivalently, the set of all prime divisors of |G|).

DEFINITION. A graph $\Gamma(G)$ whose vertex set is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$ is called the Grunberg-Kegel graph or the prime graph of G.

DEFINITION. G is prime spectrum minimal if $\pi(H) \neq \pi(G)$ for every proper (equivalently, for every maximal) subgroup H of G.

・ロト ・四ト ・ヨト ・ヨト

Let ${\cal G}$ be a group.

DEFINITION. The spectrum $\omega(G)$ is the set of all element orders of G.

DEFINITION. The prime spectrum $\pi(G)$ is the set of all prime elements of $\omega(G)$ (equivalently, the set of all prime divisors of |G|).

DEFINITION. A graph $\Gamma(G)$ whose vertex set is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$ is called the Grunberg-Kegel graph or the prime graph of G.

DEFINITION. G is prime spectrum minimal if $\pi(H) \neq \pi(G)$ for every proper (equivalently, for every maximal) subgroup H of G.

イロト イロト イヨト イヨト 三国

Let ${\cal G}$ be a group.

DEFINITION. The spectrum $\omega(G)$ is the set of all element orders of G.

DEFINITION. The prime spectrum $\pi(G)$ is the set of all prime elements of $\omega(G)$ (equivalently, the set of all prime divisors of |G|).

DEFINITION. A graph $\Gamma(G)$ whose vertex set is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$ is called the Grunberg-Kegel graph or the prime graph of G.

DEFINITION. G is prime spectrum minimal if $\pi(H) \neq \pi(G)$ for every proper (equivalently, for every maximal) subgroup H of G.

イロト イロト イヨト イヨト 三日

Let G be a group.

DEFINITION. The spectrum $\omega(G)$ is the set of all element orders of G.

DEFINITION. The prime spectrum $\pi(G)$ is the set of all prime elements of $\omega(G)$ (equivalently, the set of all prime divisors of |G|).

DEFINITION. A graph $\Gamma(G)$ whose vertex set is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$ is called the Grunberg-Kegel graph or the prime graph of G.

DEFINITION. G is prime spectrum minimal if $\pi(H) \neq \pi(G)$ for every proper (equivalently, for every maximal) subgroup H of G.

イロト イロト イヨト イヨト 三日

Let G be a group.

DEFINITION. The spectrum $\omega(G)$ is the set of all element orders of G.

DEFINITION. The prime spectrum $\pi(G)$ is the set of all prime elements of $\omega(G)$ (equivalently, the set of all prime divisors of |G|).

DEFINITION. A graph $\Gamma(G)$ whose vertex set is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$ is called the Grunberg-Kegel graph or the prime graph of G.

DEFINITION. G is prime spectrum minimal if $\pi(H) \neq \pi(G)$ for every proper (equivalently, for every maximal) subgroup H of G.

Conjecture. (P.Shumyatskii, [KN, 17.125]). In any finite group G, there is a pair a, b of conjugate elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

In 2013 A. Luccini, M. Morigi and P.Shumyatskii proved, in any finite group G, there is a pair a, b (not necessarily conjugate) elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

The Shumyatskii conjecture is equivalent to the following

Conjecture. Every prime spectrum minimal group is generated by a pair of conjugate elements.

Moreover, a minimal counterexample to one of these conjectures will also be a minimal counterexample to the other one.

イロト イロト イヨト イヨト 三日

Conjecture. (P.Shumyatskii, [KN, 17.125]). In any finite group G, there is a pair a, b of conjugate elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

In 2013 A. Luccini, M. Morigi and P.Shumyatskii proved, in any finite group G, there is a pair a, b (not necessarily conjugate) elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

The Shumyatskii conjecture is equivalent to the following

Conjecture. Every prime spectrum minimal group is generated by a pair of conjugate elements.

Moreover, a minimal counterexample to one of these conjectures will also be a minimal counterexample to the other one.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Conjecture. (P.Shumyatskii, [KN, 17.125]). In any finite group G, there is a pair a, b of conjugate elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

In 2013 A. Luccini, M. Morigi and P.Shumyatskii proved, in any finite group G, there is a pair a, b (not necessarily conjugate) elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

The Shumyatskii conjecture is equivalent to the following

Conjecture. Every prime spectrum minimal group is generated by a pair of conjugate elements.

Moreover, a minimal counterexample to one of these conjectures will also be a minimal counterexample to the other one.

Conjecture. (P.Shumyatskii, [KN, 17.125]). In any finite group G, there is a pair a, b of conjugate elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

In 2013 A. Luccini, M. Morigi and P.Shumyatskii proved, in any finite group G, there is a pair a, b (not necessarily conjugate) elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

The Shumyatskii conjecture is equivalent to the following

Conjecture. Every prime spectrum minimal group is generated by a pair of conjugate elements.

Moreover, a minimal counterexample to one of these conjectures will also be a minimal counterexample to the other one.

Problem. What is the normal structure of a finite prime spectrum minimal group, in particular, what are its nonabelian composition factors?

Theorem 1 (M. Liebeck, C. Praeger, J. Saxl, 2000). Let G be a simple group and H is a proper subgroup of G such that $\pi(H) = \pi(G)$. Then one of the following conditions holds: (1) $G \cong A_n$ and $A_k < H < S_k \times S_{n-k}$; (2) $G \cong PSp_4(q)$ and $PSp_2(q^2) \triangleleft H$; (3) $G \cong PSp_{2m}(q)$ where m and q are even and $\Omega_{2m}^{-}(q) \trianglelefteq H$; (4) $G \cong P\Omega_{2m+1}(q)$ where m is even, q is odd and $\Omega_{2m}^{-}(q) \triangleleft H$; (5) $G \cong P\Omega_{2m}^+(q)$ where m is even and $\Omega_{2m-1}(q) \triangleleft H$; (6) $G \cong PSL_6(2)$ and either H is a stabilizer of a subspace of dimension 1 or 5 of the natural space of G or $H \cong PSL_5(2)$; (7) $G \cong PSU_4(2)$ and either $H < 2^4 A_5$ or $H < S_6$; (8) $G \cong P\Omega_8^+(2)$ and either $H \leq 2^6 : A_8$ or $H \leq A_9$; (9) $G \cong PSU_4(3)$ and either $H \cong PSL_3(4)$ or $H \cong A_7$; (10) $PSp_6(2)$ and $H \in \{S_8, A_8, S_7, A_7\};$

(11)
$$G \cong G_2(3)$$
 and $H \cong PSL_2(13)$;
(12) $G \cong M_{11}$ and $H \cong PSL_2(11)$;
(13) $G \cong PSU_3(3)$ and $H \cong PSL_2(7)$;
(14) $G \cong PSU_3(5)$ and $H \cong PSL_2(7)$;
(15) $G \cong PSU_5(2)$ and $H \cong PSL_2(11)$;
(16) $G \cong PSU_6(2)$ and $H \cong M_{22}$;
(17) $G \cong PSp_4(7)$ and $H \cong A_7$;
(18) $G \cong^2 F_4(2)'$ and $H \cong PSL_2(25)$;
(19) $G \cong M_{12}$ and either $H \cong PSL_2(11)$ or $H \cong M_{11}$;
(20) $G \cong M_{24}$ and $H \cong M_{23}$;
(21) $G \cong HS$ and $H \cong M_{22}$;
(22) $G \cong McL$ and $H \cong M_{22}$;
(23) $G \cong Co_2$ and $H \cong M_{23}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

Theorem 2 (N.M., D. O. Revin, 2013). The group McL is not a prime spectrum minimal, but there exists a prime spectrum minimal group of form $(McL)^{104} \\ \\ SL_2(103)$. Every prime spectrum minimal group G containing McL as a compositional factor possesses a normal series

$$G \geq Y > Z \geq 1$$

such that

- 1) in the groups G/Y and Z there are not composition factors isomorphic to McL;
- the factor-group Y/Z is a chief factor of G and is isomorphic to a direct product of some groups every of which is isomorphic to McL;
- 3) the factor-group G/Y is nonsolvable, it's order is not devisible by 7 and 11, and it's non-abelian composition factors are isomorphic to groups of the list: $PSL_2(q)$, $PSL_3(q)$, $PSL_4(q)$, $PSL_5(q)$, $PSU_3(q)$, $PSU_4(q)$, $PSU_5(q)$, $PSp_4(2^w)$, ${}^2B_2(2^{2m+1})$, ${}^2F_4(2^{2m+1})$, J_3 , $AB \to AB \to AB$

To construct an example of a prime spectrum minimal group of form $(McL)^{104} > SL_2(103)$ we used the following

Theorem 3 (A. V. Zavarnitsine, 2013). The group $\mathbb{Z}_2 \wr_{\Omega} PSL_2(q)$ contains a subgroup isomorphic to $SL_2(q)$ IFF $q \not\equiv 1 \pmod{4}$.

Problem. Let $G \cong \mathbb{Z}_r \wr_{\Omega} PSL_r(q)$ where r is a prime divisor of q-1. When does G contain a subgroup isomorphic to $SL_r(q)$?

N. V. Maslova On the finite groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

To construct an example of a prime spectrum minimal group of form $(McL)^{104} > SL_2(103)$ we used the following

Theorem 3 (A. V. Zavarnitsine, 2013). The group $\mathbb{Z}_2 \wr_{\Omega} PSL_2(q)$ contains a subgroup isomorphic to $SL_2(q)$ IFF $q \not\equiv 1 \pmod{4}$.

Problem. Let $G \cong \mathbb{Z}_r \wr_{\Omega} PSL_r(q)$ where r is a prime divisor of q-1. When does G contain a subgroup isomorphic to $SL_r(q)$?

N. V. Maslova On the finite groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

To construct an example of a prime spectrum minimal group of form $(McL)^{104} > SL_2(103)$ we used the following

Theorem 3 (A. V. Zavarnitsine, 2013). The group $\mathbb{Z}_2 \wr_{\Omega} PSL_2(q)$ contains a subgroup isomorphic to $SL_2(q)$ IFF $q \not\equiv 1 \pmod{4}$.

Problem. Let $G \cong \mathbb{Z}_r \wr_{\Omega} PSL_r(q)$ where r is a prime divisor of q - 1. When does G contain a subgroup isomorphic to $SL_r(q)$?

Theorem 4 (N.M., D. O. Revin, 2013). The following finite simple groups are not isomorphic to composition factors of finite prime spectrum minimal groups: (1) Sporadic simple groups M_{11} , M_{12} , M_{24} , HS, Co_3 , Co_2 ana Tits group ${}^2F_4(2)'$; (2) alternating groups A_n where n is not a prime; (3) $PSp_4(q)$ where q odd; (4) $PSp_{2m}(q)$ where both $m \ge 4$ and q are even; (5) $P\Omega_{2m+1}(q)$ where $m \ge 4$ is even and q is odd; (a) PSU(q) and PSU(q) and PSU(q) and PSU(q)

(6) $PSU_3(3)$, $PSU_4(2)$, $PSU_5(2)$, $PSp_6(2)$, $PSL_6(2)$, $G_2(3)$.

Question. Are groups $P\Omega_{4k}^+(q)$, $PSp_4(2^w)$, $PSU_3(5)$, $PSU_4(3)$, $PSU_6(2)$ isomorphic to nonabelian composition factors of finite prime spectrum minimal groups?

(日) (周) (三) (三) (三) (○) (○)

Theorem 4 (N.M., D. O. Revin, 2013). The following finite simple groups are not isomorphic to composition factors of finite prime spectrum minimal groups: (1) Sporadic simple groups M_{11} , M_{12} , M_{24} , HS, Co_3 , Co_2 ana Tits group ${}^2F_4(2)'$; (2) alternating groups A_n where n is not a prime; (3) $PSp_4(q)$ where q odd; (4) $PSp_{2m}(q)$ where both $m \ge 4$ and q are even; (5) $P\Omega_{2m+1}(q)$ where $m \ge 4$ is even and q is odd; (6) $PSU_3(3)$, $PSU_4(2)$, $PSU_5(2)$, $PSp_6(2)$, $PSL_6(2)$,

 $G_2(3).$

Question. Are groups $P\Omega_{4k}^+(q)$, $PSp_4(2^w)$, $PSU_3(5)$, $PSU_4(3)$, $PSU_6(2)$ isomorphic to nonabelian composition factors of finite prime spectrum minimal groups?

Recall that the vertex set of the graph $\Gamma(G)$ of a group G is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$.

Question (C. Parker, 2013). Let G be a group. Is there H < G such that $\Gamma(G) = \Gamma(H)$?

Example. Let $G = S_6$ and $H = S_5$. Then $\Gamma(G) = \Gamma(H)$.

N. V. Maslova On the finite groups

イロト イロト イヨト イヨト 三日

Recall that the vertex set of the graph $\Gamma(G)$ of a group G is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$.

Question (C. Parker, 2013). Let G be a group. Is there H < G such that $\Gamma(G) = \Gamma(H)$?

Example. Let $G = S_6$ and $H = S_5$. Then $\Gamma(G) = \Gamma(H)$.

N. V. Maslova On the finite groups

Recall that the vertex set of the graph $\Gamma(G)$ of a group G is $\pi(G)$ and two distinct vertices p and q are adjacent IFF $pq \in \omega(G)$.

Question (C. Parker, 2013). Let G be a group. Is there H < G such that $\Gamma(G) = \Gamma(H)$?

Example. Let $G = S_6$ and $H = S_5$. Then $\Gamma(G) = \Gamma(H)$.

N. V. Maslova On the finite groups

Remark. In view of Lemma the most interesting case of Parker's question the following

Question*. Let G be a simple group. Is there H < G such that $\Gamma(G) = \Gamma(H)$?

Remark. If H < G and $\Gamma(H) = \Gamma(G)$ then $\pi(H) = \pi(G)$.

N. V. Maslova On the finite groups

イロト イロト イヨト イヨト 三日

Remark. In view of Lemma the most interesting case of Parker's question the following

Question*. Let G be a simple group. Is there H < G such that $\Gamma(G) = \Gamma(H)$?

Remark. If H < G and $\Gamma(H) = \Gamma(G)$ then $\pi(H) = \pi(G)$.

N. V. Maslova On the finite groups

イロト イロト イヨト イヨト 三日

Remark. In view of Lemma the most interesting case of Parker's question the following

Question*. Let G be a simple group. Is there H < G such that $\Gamma(G) = \Gamma(H)$?

Remark. If H < G and $\Gamma(H) = \Gamma(G)$ then $\pi(H) = \pi(G)$.

N. V. Maslova On the finite groups

Remark. In view of Lemma the most interesting case of Parker's question the following

Question*. Let G be a simple group. Is there H < G such that $\Gamma(G) = \Gamma(H)$?

Remark. If H < G and $\Gamma(H) = \Gamma(G)$ then $\pi(H) = \pi(G)$.

N. V. Maslova On the finite groups

Theorem 5 (N. M., 2014). Let G be a simple group and H < G. Then $\Gamma(G) = \Gamma(H)$ IFF one of the following conditions holds:

(1) (mod Golbakh's conjecture) $G \cong A_n$ where n and n-4 are odd composite integers and $H \cong A_{n-1}$; (2) $G \cong PSp_4(q)$ and $H \cong PSL_2(q^2).\langle t \rangle$ where q is even and t is a field automorphism of order 2 of $PSL_2(q^2)$; (3) $G \cong PSp_8(2^w)$ and $H \cong SO_8^-(2^w)$; (4) $G \cong P\Omega_8^+(q)$ and $H \cong P\Omega_7(q)$; (5) $G \cong PSL_6(2)$ and H is a stabilizer of a subspace of dimension 1 or 5;

(6)
$$G \cong A_6$$
 and $H \cong A_5$;
(7) $G \cong A_{10}$ and $H \cong (S_7 \times S_3) \cap A_{10}$;
(8) $G \cong PSU_4(2) \cong PSp_4(3)$ and $H \in \{2^4 : A_5, S_6, S_5\}$;
(9) $G \cong PSp_6(2)$ and $H \cong S_8$;
(10) $G \cong PSU_4(3)$ and $H \cong A_7$;
(11) $G \cong G_2(3)$ and $H \cong PSL_2(13)$;
(12) $G \cong M_{11}$ and $H \cong PSL_2(11)$;
(13) $G \cong P\Omega_8^+(2)$ and $H \in \{2^6 : A_8, A_9, S_8\}$, we have a set of S_8 is the set of S_8 .

Theorem was published in March 2014

N. V. Maslova, On the coincidence of Grünberg-Kegel graphs of a finite simple group and its proper subgroup // Trudy Instituta Matematiki i Mekhaniki UrO RAN. 20 (2014), 1, 156–168 (in Russian). English translation: Proceedings of the Steklov Institute of Mathematics (Supplementary issues). 288 (2015), suppl. 1, S129–S141.

The same result was obtained independently by Timothy C. Burness and Elisa Covato, see $arXiv: 1407.8128vl \ [math.GR] \ 30 \ Jul \ 2014$

N. V. Maslova On the finite groups

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Recall that the spectrum $\omega(G)$ is the set of all element orders of a group G.

Lemma. Let G be a group and $L \leq H \leq G$. Then $\omega(H/L) \subseteq \omega(G)$.

Remark. If L = 1 and H = G then $\omega(H/L) = \omega(G)$.

DEFINITION. A group G is said to be *spectrum critical* if for every subgroups L and H such that $L \leq H \leq G$ if $\omega(H/L) = \omega(G)$ then H = G and L = 1.

Example. Simple groups $P\Omega_8^+(2)$ and $P\Omega_8^+(3)$ aren't spectrum critical.

Recall that the spectrum $\omega(G)$ is the set of all element orders of a group G.

Lemma. Let G be a group and $L \leq H \leq G$. Then $\omega(H/L) \subseteq \omega(G)$.

Remark. If L = 1 and H = G then $\omega(H/L) = \omega(G)$.

DEFINITION. A group G is said to be *spectrum critical* if for every subgroups L and H such that $L \leq H \leq G$ if $\omega(H/L) = \omega(G)$ then H = G and L = 1.

Example. Simple groups $P\Omega_8^+(2)$ and $P\Omega_8^+(3)$ aren't spectrum critical.

Recall that the spectrum $\omega(G)$ is the set of all element orders of a group G.

Lemma. Let G be a group and $L \leq H \leq G$. Then $\omega(H/L) \subseteq \omega(G)$.

Remark. If L = 1 and H = G then $\omega(H/L) = \omega(G)$.

DEFINITION. A group G is said to be *spectrum critical* if for every subgroups L and H such that $L \leq H \leq G$ if $\omega(H/L) = \omega(G)$ then H = G and L = 1.

Example. Simple groups $P\Omega_8^+(2)$ and $P\Omega_8^+(3)$ aren't spectrum critical.

Recall that the spectrum $\omega(G)$ is the set of all element orders of a group G.

Lemma. Let G be a group and $L \leq H \leq G$. Then $\omega(H/L) \subseteq \omega(G)$.

Remark. If L = 1 and H = G then $\omega(H/L) = \omega(G)$.

DEFINITION. A group G is said to be *spectrum critical* if for every subgroups L and H such that $L \leq H \leq G$ if $\omega(H/L) = \omega(G)$ then H = G and L = 1.

Example. Simple groups $P\Omega_8^+(2)$ and $P\Omega_8^+(3)$ aren't spectrum critical.

Recall that the spectrum $\omega(G)$ is the set of all element orders of a group G.

Lemma. Let G be a group and $L \leq H \leq G$. Then $\omega(H/L) \subseteq \omega(G)$.

Remark. If L = 1 and H = G then $\omega(H/L) = \omega(G)$.

DEFINITION. A group G is said to be *spectrum critical* if for every subgroups L and H such that $L \leq H \leq G$ if $\omega(H/L) = \omega(G)$ then H = G and L = 1.

Example. Simple groups $P\Omega_8^+(2)$ and $P\Omega_8^+(3)$ aren't spectrum critical.

Recall that the spectrum $\omega(G)$ is the set of all element orders of a group G.

Lemma. Let G be a group and $L \leq H \leq G$. Then $\omega(H/L) \subseteq \omega(G)$.

Remark. If L = 1 and H = G then $\omega(H/L) = \omega(G)$.

DEFINITION. A group G is said to be *spectrum critical* if for every subgroups L and H such that $L \leq H \leq G$ if $\omega(H/L) = \omega(G)$ then H = G and L = 1.

Example. Simple groups $P\Omega_8^+(2)$ and $P\Omega_8^+(3)$ aren't spectrum critical.

CLASSIFICATION OF FINITE SIMPLE GROUPS WHICH AREN'T SPECTRUM CRITICAL

YES!

Theorem 6 (N.M., 2014). Let G be a simple group, L, H < G and $L \leq H$. Then $\omega(G) = \omega(H/L)$ IFF L = 1 and one of the following conditions holds: (1) $G \cong PSp_4(q)$ and $H \cong PSL_2(q^2)$. $\langle t \rangle$ where q is even and t is a field automorphism of order 2 of $PSL_2(q^2)$; (2) $G \cong PSp_8(2^w)$ and $H \cong SO_8^-(2^w)$; (3) $G \cong P\Omega_8^+(2)$ and $H \cong P\Omega_7(2)$; (4) $G \cong P\Omega_7^+(3)$ and $H \cong P\Omega_7(3)$.

CLASSIFICATION OF FINITE SIMPLE GROUPS WHICH AREN'T SPECTRUM CRITICAL

YES!

Theorem 6 (N.M., 2014). Let G be a simple group, L, H < G and $L \leq H$. Then $\omega(G) = \omega(H/L)$ IFF L = 1 and one of the following conditions holds: (1) $G \cong PSp_4(q)$ and $H \cong PSL_2(q^2).\langle t \rangle$ where q is even and t is a field automorphism of order 2 of $PSL_2(q^2)$; (2) $G \cong PSp_8(2^w)$ and $H \cong SO_8^-(2^w)$; (3) $G \cong P\Omega_8^+(2)$ and $H \cong P\Omega_7(2)$; (4) $G \cong P\Omega_8^+(3)$ and $H \cong P\Omega_7(3)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

G is a prime spectrum critical group \Rightarrow G is spectrum critical and prime spectrum minimal.

DEFINITION. H is a Hall subgroup of G if (|H|, |G:H|) = 1.

Theorem 7 (N.M., 2015). Let G be a prime spectrum minimal group. G is prime spectrum critical IFF the Fitting subgroup F(G) is a Hall subgroup of G.

N. V. Maslova On the finite groups

イロト イロト イヨト イヨト 三日

G is a prime spectrum critical group $\Rightarrow G$ is spectrum critical and prime spectrum minimal.

DEFINITION. H is a Hall subgroup of G if (|H|, |G:H|) = 1.

Theorem 7 (N.M., 2015). Let G be a prime spectrum minimal group. G is prime spectrum critical IFF the Fitting subgroup F(G) is a Hall subgroup of G.

N. V. Maslova On the finite groups

G is a prime spectrum critical group $\Rightarrow G$ is spectrum critical and prime spectrum minimal.

DEFINITION. H is a Hall subgroup of G if (|H|, |G:H|) = 1.

Theorem 7 (N.M., 2015). Let G be a prime spectrum minimal group. G is prime spectrum critical IFF the Fitting subgroup F(G) is a Hall subgroup of G.

N. V. Maslova On the finite groups

G is a prime spectrum critical group $\Rightarrow G$ is spectrum critical and prime spectrum minimal.

DEFINITION. H is a Hall subgroup of G if (|H|, |G:H|) = 1.

Theorem 7 (N.M., 2015). Let G be a prime spectrum minimal group. G is prime spectrum critical IFF the Fitting subgroup F(G) is a Hall subgroup of G.

Thank you for your attention!

N. V. Maslova On the finite groups

(ロ)、

N. V. Maslova, D. O. Revin, On the nonabelian composition factors of a finite prime spectrum minimal group // Trudy Instituta Matematiki i Mekhaniki UrO RAN. 19 (2013), 4, 155–166 (in Russian). English translation: Proceedings of the Steklov Institute of Mathematics (Supplementary issues). 287 (2014), suppl. 1, S116–S127.

N. V. Maslova, On the coincidence of Grünberg-Kegel graphs of a finite simple group and its proper subgroup // Trudy Instituta Matematiki i Mekhaniki UrO RAN. 20 (2014), 1, 156–168 (in Russian). English translation: Proceedings of the Steklov Institute of Mathematics (Supplementary issues). 288 (2015), suppl. 1, S129–S141.

N. V. Maslova, Finite simple groups that are not spectrum critical //Trudy Instituta Matematiki i Mekhaniki UrO RAN. 21 (2015), 1, 172–176 (in Russian).