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Orbits of a differential system

Topologically the orbits of a differential system are:

points (equilibrium points or singular points),

circles (periodic solutions), or

straight lines.

In this talk we are interested in studying the phase portrait in a
neighborhood of an equilibrium point of an analytic differential
system in the plane.
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It is known that the phase portrait in a neighborhood of an
equilibrium point of an analytic differential system in the plane is

either a center,

or focus,

or finite union of elliptic, hyperbolic and parabolic sectors.
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In this talk we deal with the analytic differential systems of the
form

ẋ = P(x , y), ẏ = Q(x , y), (1)

where the dot denotes derivative with respect to an
independent real variable t . We assume that this system always
is defined in a neighborhood of the origin and that the origin is
a singular point.

If the origin is either a focus or a center, we say that it is a
monodromic singular point.

The center problem consists in distinguishing when a
monodromic singular point is either a center or a focus.

From now on in this talk we assume that the origin of system
(1) is monodromic.
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The divergence of system (1), denoted by div(x , y), is the
function

div(x , y) =
∂P
∂x

(x , y) +
∂Q
∂y

(x , y).

System (1) is a Hamiltonian system if div(x , y) ≡ 0. In such a
case if there exists a neighborhood U of the origin and an
analytic function H : U ⊆ R2 → R, called the Hamiltonian, such
that

ẋ = P(x , y) = −∂H
∂y

, ẏ = Q(x , y) =
∂H
∂y

,

then the monodromic singular point at the origin of this
Hamiltonian system always is a center.

Our aim is to show other results relating the divergence of
system (1) with the solution of the center problem.
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The four results that I will present in the following are proved in
the paper:

M. GRAU AND J. LLIBRE, Divergence and Poincaré–Liapunov
constants for analytic differential systems, J. Differential
Equations 258 (2015), 4348–4367.
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Given an analytic function f : U ⊆ R2 → R, where U is a
neighborhood of the origin, we consider its Taylor expansion at
the origin:

f (x , y) = fd (x , y) + Od+1(x , y),

where d ≥ 0 is an integer and fd (x , y) is a non–zero
homogeneous polynomial of degree d .

We say that f is of sign definite if fd (x , y) ≥ 0 or fd (x , y) ≤ 0 for
all (x , y) ∈ R2, and fd (x , y) is not identically zero.

When fd (x , y) ≥ 0 (resp. fd (x , y) ≤ 0) for all (x , y) ∈ R2 we say
that f is positive definite (resp. negative definite).

It is clear that a necessary condition for f (x , y) to be of sign
definite is that d is even.
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PROPOSITION 1 Assume that the origin of an analytic
differential system (1) is a monodromic singular point, and that
the divergence div(x , y) of system (1) is of sign definite.

Then the origin of system (1) is a focus; either unstable if the
divergence is positive definite or stable if it is negative definite.

We remark that in the case that the origin of system (1) is a
strong focus (i.e. with eigenvalues α± βi and α 6= 0), then the
divergence divd (x , y) = div(0,0) = 2α 6= 0 and the focus is
unstable if div(0,0) > 0, and stable if div(0,0) < 0.

PROPOSITION 1 is a generalization of this result for the strong
focus to any monodromic singular point.
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Assume that the origin of system (1) is a monodromic singular
point, but not a strong focus.

It is well-known that, after a linear change of variables and a
constant scaling of the time variable (if necessary), the system
can be written in one of the following three forms:

ẋ = −y + F1(x , y), ẏ = x + F2(x , y),
ẋ = y + F1(x , y), ẏ = F2(x , y),
ẋ = F1(x , y), ẏ = F2(x , y),

where F1(x , y) and F2(x , y) are real analytic functions without
constant and linear terms defined in a neighborhood of the
origin.

These three kind of monodromic singular points are called
linear type, nilpotent or degenerate, respectively.
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ẋ = −y + F1(x , y), ẏ = x + F2(x , y),
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The linear type monodromic singular points which after
changes of variables can be written as

ẋ = −y + F1(x , y), ẏ = x + F2(x , y),

are characterized by having a pair of imaginary eigenvalues.

The nilpotent monodromic singular points which after changes
of variables can be written as

ẋ = y + F1(x , y), ẏ = F2(x , y),

are characterized by the Andreev theorem (or the nilpotent
singular theorem).

The degenerate monodromic singular points which after
changes of variables can be written as

ẋ = F1(x , y), ẏ = F2(x , y),

can be characterized using blow–ups.
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Assume that we have the system

ẋ = P(x , y) = Pn(x , y) + On+1(x , y),
ẏ = Q(x , y) = Pm(x , y) + Om+1(x , y),

(2)

where n ≥ 1 and m ≥ 1 are integers and Pn(x , y) and Qm(x , y)
are non–zero homogeneous polynomials of degrees n and m
respectively, formed by the lowest order terms of P(x , y) and
Q(x , y), respectively.

Define the real polynomial

∆(x , y) =


yPn(x , y)− xQm(x , y) if n = m,
yPn(x , y) if n < m,
−xQm(x , y) if n > m.
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A sufficient condition in order that system (2) has a
monodromic singular point at the origin is that ∆(x , y) = 0 only
if (x , y) = (0,0).

In this case the origin has no characteristic directions.

A necessary condition in order that system (2) has a
monodromic singular point at the origin is that ∆(x , y) is of sign
definite.
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Suppose that the origin is a monodromic singular point. Then
we have the Poincaré map P : [0, x∗)→ [0,∞), being P(x) the
point in [0,∞) corresponding to the first cut with [0,∞) of the
orbit through the point (x ,0) in positive time.

It is clear that the origin of system (1) is a center if and only if
this Poincaré map is the identity.

For linear type singular points always the Poincaré map is
analytic at x = 0 and writes as

P(x) = x +
∞∑

i=1

αi x i ,

where αi are algebraic expressions in the coefficients of P and
Q.

Also for degenerate monodromic singular points having no
characteristic directions the Poincaré map is analytic at x = 0.
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Knowing the Poincaré map, the origin is stable if the first
non-zero αi is negative, and unstable if αi > 0.

If all αi = 0 the origin is a center.

The α2k are algebraic expressions of the previous αi . Therefore
the interesting expressions are the α2k+1’s.

We define the 2k + 1 Poincaré–Liapunov constant as the
expression α2k+1 modulus the vanishing of all the previous
ones.
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THEOREM 2 Consider an analytic differential system (1) whose
origin is a linear type monodromic singular point.

Denote by
divd (x , y) the lowest order terms of the divergence div(x , y) of
the system. Define

αd+1 =
1

d + 2

∫ 2π

0
divd (cos t , sin t) dt .

If αd+1 6= 0, then it is the non–zero first Poincaré–Liapunov
constant, and consequently the origin is a focus.

COROLLARY Consider the system

ẋ = −y + Ps(x , y), ẏ = x + Qs(x , y),

where Ps(x , y) and Qs(x , y) are homogeneous polynomials of
odd degree s. Then the first Poincaré–Liapunov constants of
system (1) are αi = 0 for i = 1,2, . . . , s − 1 and

αs =
1

s + 1

∫ 2π

0
div(cos t , sin t) dt .
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ẋ = −y + Ps(x , y), ẏ = x + Qs(x , y),
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THEOREM 3 Consider an analytic differential system (1) whose
origin is a nilpotent monodromic singular point.

Denote by
divd (x , y) the lowest order terms of the divergence div(x , y) of
the system. Define

Vd+1(ε) =

∫ 2π/
√
ε

0
divd

(
cos(
√
ε t), −

√
ε sin(

√
ε t)
)

dt ,

where ε > 0, and define the constant vd+1 through the series

expansion Vd+1(ε) =
vd+1√
ε

+ O(ε).

(a) If the origin is a center, then vd+1 = 0 for all ε > 0.

(b) If vd+1 > 0 (resp. vd+1 < 0), then the origin is an unstable
(resp. stable) focus.
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Assume that there is a monodromic singular point at the origin
of system (1) without characteristic directions.

Then the
polynomial ∆(x , y) defined previously satisfies that ∆(x , y) = 0
only if (x , y) = (0,0).

In this case the degree of the lowest order terms of P(x , y) and
Q(x , y) must coincide, that is,

P(x , y) = Pn(x , y) +On+1(x , y),
Q(x , y) = Qn(x , y) +On+1(x , y).

We define

v(θ) = exp
[∫ θ

0

cosσPn(cosσ, sinσ) + sinσQn(cosσ, sinσ)

cosσQn(cosσ, sinσ)− sinσPn(cosσ, sinσ)
dσ
]
.
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THEOREM 4 Consider an analytic differential system (1) whose
origin is monodromic and has no characteristic directions.

Denote by divd (x , y) the lowest order terms of degree d of the
divergence div(x , y) of the system. Assume that v(2π) = 1 and

α =

∫ 2π

0

divd (cos θ, sin θ) v(θ)d−n+1

cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ)
dθ 6= 0.

Then the origin is a focus which is stable (resp. unstable) if
α < 0 (resp. α > 0).

We remark that from PROPOSITION 1, if v(2π) > 1 then the
origin is an unstable focus, and if v(2π) < 1 then the origin is a
stable focus. So this theorem is useful to establish the stability
of the origin when v(2π) = 1.
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Until now we have establish our results. Now we shall prove the
first result.

PROPOSITION 1 Assume that the origin of an analytic
differential system (1) is a monodromic singular point, and that
the divergence div(x , y) of system (1) is of sign definite.
Then the origin of system (1) is a focus; either unstable if the
divergence is positive definite or stable if it is negative definite.
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Proof of PROPOSITION 1.

The Bendixson criterium: If the divergence of a system (1) is
not identically zero and does not change sign in a simply
connected region in R2, then there is no closed orbit lying
entirely in this simply connected region.

If the divergence of system (1) is of sign definite, then there is a
neighborhood UO of the origin in which div(x , y) ≥ 0 or
div(x , y) ≤ 0 for all (x , y) ∈ UO.

If the origin is a center, then there is a continuum of periodic
orbits completely contained in UO which contradicts the
Bendixson criterium. Hence, the origin is a focus. This proves
the first part of the PROPOSITION.

Now it remains to study the kind of stability this focus.
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Bendixson criterium. Hence, the origin is a focus.

This proves
the first part of the PROPOSITION.

Now it remains to study the kind of stability this focus.
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We are going to prove that if div(x , y) is positive definite, then
the origin of (1) is an unstable focus.

The corresponding proof
when div(x , y) is negative definite is analogous.

We consider a transversal section Σ whose boundary contains
the origin O and a neighborhood UO of the origin such that
div(x , y) ≥ 0 for all (x , y) ∈ UO. We only consider the part of Σ
contained in UO.

We fix a point ρ in Σ and we consider the point in Σ
corresponding to its image by the Poincaré map P(ρ) (when
this is defined). If ρ is close enough to the origin, we can ensure
that P(ρ) is contained in UO.
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We define the closed curve C formed by the arc of the orbit
from ρ to P(ρ) together with the arc of Σ between these two
points.

We denote by ` the arc of Σ between the points ρ and
P(ρ).

Since Σ is a transversal section, we have that all the orbits of
(1) cross ` in the same direction, either inside or outside the
region D limited by the curve C and the segment `.

The origin is stable if the orbits cross ` in the inside direction
and unstable otherwise.

JAUME LLIBRE Universitat Autònoma de Barcelona On the equilibrium points of an analytic differentiable system in the plane. The center–focus problem and the divergence.



We define the closed curve C formed by the arc of the orbit
from ρ to P(ρ) together with the arc of Σ between these two
points. We denote by ` the arc of Σ between the points ρ and
P(ρ).

Since Σ is a transversal section, we have that all the orbits of
(1) cross ` in the same direction, either inside or outside the
region D limited by the curve C and the segment `.

The origin is stable if the orbits cross ` in the inside direction
and unstable otherwise.

JAUME LLIBRE Universitat Autònoma de Barcelona On the equilibrium points of an analytic differentiable system in the plane. The center–focus problem and the divergence.



We define the closed curve C formed by the arc of the orbit
from ρ to P(ρ) together with the arc of Σ between these two
points. We denote by ` the arc of Σ between the points ρ and
P(ρ).

Since Σ is a transversal section, we have that all the orbits of
(1) cross ` in the same direction, either inside or outside the
region D limited by the curve C and the segment `.

The origin is stable if the orbits cross ` in the inside direction
and unstable otherwise.

JAUME LLIBRE Universitat Autònoma de Barcelona On the equilibrium points of an analytic differentiable system in the plane. The center–focus problem and the divergence.



We define the closed curve C formed by the arc of the orbit
from ρ to P(ρ) together with the arc of Σ between these two
points. We denote by ` the arc of Σ between the points ρ and
P(ρ).

Since Σ is a transversal section, we have that all the orbits of
(1) cross ` in the same direction, either inside or outside the
region D limited by the curve C and the segment `.

The origin is stable if the orbits cross ` in the inside direction
and unstable otherwise.

JAUME LLIBRE Universitat Autònoma de Barcelona On the equilibrium points of an analytic differentiable system in the plane. The center–focus problem and the divergence.



We consider∮
C

Pdy −Qdx =

∫
C\`

Pdy −Qdx +

∫
`
Pdy −Qdx .

Since the curve C\` is an orbit of system (1) we have that∫
C\`

Pdy −Qdx = 0.

On the other hand, since div(x , y) ≥ 0 for all (x , y) ∈ D, we
have by the Green’s formula∮

C
Pdy −Qdx =

∫∫
D

div(x , y) dxdy > 0.
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So ∫
`
Pdy −Qdx > 0.

This implies that all the orbits of (1) cross ` in the outside
direction and, thus, the origin of (1) is unstable.

This completes
the proof of PROPOSITION 1.
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THEOREM 2 Consider an analytic differential system (1) whose
origin is a linear type monodromic singular point. Denote by
divd (x , y) the lowest order terms of the divergence div(x , y) of
the system. Define

αd+1 =
1

d + 2

∫ 2π

0
divd (cos t , sin t) dt .

If αd+1 6= 0 it is the non–zero first Poincaré–Liapunov constant,
and consequently the origin is a focus.

Its proof uses the Birkhoff normal form of a center provided in

G. BELITSKIĬ, Smooth equivalence of germs of vector fields
with one zero or a pair of purely imaginary eigenvalues, Funct.
Anal. Appl. 20 (1986), 253–259.
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THEOREM 3 Consider an analytic differential system (1) whose
origin is a nilpotent monodromic singular point. Denote by
divd (x , y) the lowest order terms of the divergence div(x , y) of
the system. Define

Vd+1(ε) =

∫ 2π/
√
ε

0
divd

(
cos(
√
ε t), −

√
ε sin(

√
ε t)
)

dt ,

where ε > 0, and define the constant vd+1 through the series

expansion Vd+1(ε) =
vd+1√
ε

+ O(ε).

(a) If the origin is a center, then vd+1 = 0 for all ε > 0.

(b) If vd+1 > 0 (resp. vd+1 < 0), then the origin is an unstable
(resp. stable) focus.
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The proof of Theorem 3 uses results from

J. GINÉ AND J. LLIBRE, A method for characterizing nilpotent
centers, J. Math. Anal. Appl. 413 (2014), 537–545.

I.A. GARCÍA, H. GIACOMINI, J. GINÉ AND J. LLIBRE, Analytic
nilpotent centers as limits of nondegenerated centers revisited,
Preprint.
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THEOREM 4 Consider an analytic differential system (1) whose
origin is monodromic and has no characteristic directions.
Denote by divd (x , y) the lowest order terms of degree d of the
divergence div(x , y) of the system. Assume that v(2π) = 1 and

α =

∫ 2π

0

divd (cos θ, sin θ) v(θ)d−n+1

cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ)
dθ 6= 0.

Then the origin is a focus which is stable (resp. unstable) if
α < 0 (resp. α > 0).

The proof follows by direct computations.
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For more details on the proofs of THEOREMS 2, 3 and 4 see
the paper:

M. GRAU AND J. LLIBRE, Divergence and Poincaré–Liapunov
constants for analytic differential systems, J. Differential
Equations 258 (2015), 4348–4367.
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