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Commuting graphs

AamagmazZ(A) ={x € A; ax =xaVa e A}.
Its commuting graphl’ = I'(.A4), is simple graph with

XY =YX

V() = A\ Z(A); X—Yifr{ X2y

NOT EASY TO VISUALIZE!



Commuting graphs: ['(Ms(Z5))

mV(I)=A\Z(A); E() = {(a,b); ab=ba, a # b}.
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Commuting graphs: I'(M;3(Z5))

V(D) =A\Z(A); E(T) ={(a,b); ab=ba, a # b}.

I'(Ms(22))

_________



Commuting graphs. Groups!
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Commuting graphs. Groups!
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Fundamental question for I

APPLICATIONS!?



Answer: In Applications!

PHILOSOPHY. Often, a given algebra has "a lot of
(non)commuting pairs".

Theorem (Watkins (1976)) A linear bijection
¢: M, (C) — M,(C), (n > 4) preserves commutativity.
THEN

(X)) = cTXT !+ f(X)I
H(X) = (cTXT ' + f(X)I)




Answer: In Applications!

Theorem (Dolinar, K., submitted)

d: M,(C) L5 M, (C), preserves commutativity.
Assumep(X) € CI implies X € CI.

THEN: ¢ Is surjective homomorphism of commuting
graph. Moreover,

{Qb(R) = vgT 'R, T

. kR=1
O(R) = vaT-'(R,)T © KA

vr € C, R, := (a(rij))z.j whereC < C field isomorphism.



Answer: In Applications!

Theorem (Mohammedian 2010)
F = GF(p~) afinite field, R a unital ring.

IF T(R) ~ T'(Ms(F)) THEN R ~ My(F).



Answer: In Applications!

Theorem (Mohammedian 2010)
F = GF(p~) afinite field, R a unital ring.

IF T(R) ~ T'(Ms(F)) THEN R ~ My(F).

Theorem (Solomon, Woldar 2014)
S a finite, simple, nonabelian grou@;a group.

IFT(S) ~ I'(G) THEN S ~ G.



Basic problemsfor I'

Homomorphisms (=commutativity preserving maps
without linearity).

Isomorphism problem.



Basic problemsfor I'

Homomorphisms (=commutativity preserving maps
without linearity).

somorphism problem.
Diameter/connectedness problem.
Realization problem.

Structure recognition problem.




Commuting graph of 2(H)

NOTATIONS:

e 7{ a complex Hilbert spacelim H < .
e (H) Banach algebra of bounded operatorsHn

o '=1(%H(H)).
o A :={X € #H); AX = XA} acommutant.
e A—B—(C—... (a path Inl’)

mean§ AB — BA)=0=(BC —-CB)=....

o [ € M,(C)a STD matrix unit.



Properties

w dimH = 2. THEN:T'(M5(C)) is not connected.

PROOF

(60) =(52),and(52)" = (52).
So,F;{—...— F{5 does not exists.



Properties

dim H = 2. THEN:T'(M5(C)) is not connected.

PROOF
(60) =(52),and(52)" = (52).
So,F;{—...— F{5 does not exists.

Actually, I'( M5(C)) = co K !



Properties

dim H = 2. THEN:T'(M5(C)) is not connected.

(Akbari-Mohammadian-Radjavi-Raja OfﬁllmH =N 2 3. THEN:
I'(M,,(C)) always connected with diametér

PARTIAL PROOF
A path of length four betweeA, B:

A has e.vector (corresponding to e.value.

A' has e.vectolf (again to e.valug).

Hence, A—(x f™). Likewise existg, g with (y¢") — B.
d nonzeroz, h with %z =0 = ¢"z andh™z = 0 = h™y.
THEN, A—(zf")—(zh") —(yg") — B.
Can showd(J™, J) = 4.



Properties

dim H = 2. THEN:T'(M5(C)) is not connected.

(Akbari-Mohammadian-Radjavi-Raja oa)hmH =N 2 3. THEN:
I'(M,,(C)) always connected with diametér

If F #4T,
THEN: A, B may lack e.vectors, hence proof fails!

Worse still: commuting graph may be disconnected.



Commuting graph of 2(H)

Theorem (amorozie-sraie-mutier«.). If 7 1S non-separable,
THENdiam(I") = 2.
PROOF
ChooseA, B € A(H)\CI.
DefineVV := Semigp{I, A, A*, B, B*}, fix nonzeroxr € H.
N :=\/ Wz is closed, separable subspace, and contains
HENCE:N is a proper reducing subspace fbandB.
Let P be orthogonal projection aiV.
SinceN is reducing,A— P — B. ]




Commuting graph of 2(H)

Theorem (ambrozie-Braic-muterx.). If H = ¢? is separable,
THENdiam(I") = oo.
Moreover, 3T € %(H) such that

T'=X  XeT\CIL



Commuting graph of 2(H)

Theorem (Ambrozie-Briié-MUIIer-K.). dim H = co. THEN,

v’ Finite rank operators,

v’ operators with disconnected spectrum,
v' nonscalar operators similar to

(1) normal or (i) to Cy-contractions or
(111) to weighed shifts or (Iv) to partial isometries

are in the same connected component@®(H)).



Realizability problem

Theorem (Realizability,Ambrozie,Brzi:ié,K., MUIIer). Letl be a
simple graph. Ther, Iis iIsomorphic to a commuting
subgraph ofZ(H), spanned by rank-two projections.
If I' Is finite, thendim H < .

Remark.Similar question was considered by T. Pisanski
for realizabilitry of finite graphs as commuting graphs of
GROUPS.



Realizability problem

Theorem (Nonrealizabilityambrozie braic k., mier). The graph
on|T'| = 2n? + 1 vertices which cannot be embedded as
a commuting graph aob/,, (C).

Coe 0 @ .~

1 2



Property recognition

T heOr em (Dolinar,ObIak,K) .
n > 3. TFAE forB € M, (C).

() B nonderogatory.
(1) B is minimalge. x’' c B impliesx’ = B).
(i) 4X withd(B, X) = 4.



Property recognition

T heOr em (Dolinar,ObIak,K) .
n > 3. TFAE forB € M, (C).

() B nonderogatory.
(1) B is minimalge. x’' c B impliesx’ = B).
(i) 4X withd(B, X) = 4.

e (ZZ) by Semrl.
® _I(Z) —_— _I(ZZZ) IDEA. Fix X, can find rank-one® with RX = X R. Assume

T T
JIn -
B = ( - } ) Then,Z = ( xF a;:) satisfiesBZ = ZB. If R € My, 4n, (F)

is any rank-one, can find nonzetg so thatRZ = ZR. Hence, B—Z — R— X.



Property recognition

T heOr em (Dolinar,ObIak,K) .
n > 3. TFAE forB € M, (C).

() B nonderogatory.
(1) B is minimalge. x’' c B impliesx’ = B).
(i) 4X withd(B, X) = 4.

o (1) = (i12) W
INn upper-triangu
A.M.R.R.,cans

LOG B =@, Jm, (1))
ar Jordan form. Adapting the proof of

nowd (B, J&) = 4.



Property recognition

T heOr em (Dolinar,ObIak,K) .
n > 3. TFAE forB € M, (C).

() B nonderogatory.
(1) B is minimalge. x’' c B impliesx’ = B).
(i) 4X withd(B, X) = 4.

Actually, (1) = (i:2) follows from a more general fact:
Theorem (pok). A=®F , J..(\), B= @§=1 I, (145)
nonderogatory of any given type
n+---+np=n=mq+---+my. THEN,

d(A, S71BS) = 4. (s_(iy))




Property recognition

Minimal matrices are the ones that come at maximal
distance.

Theorem (cessicatonorrank-one. 1 FAE for nonscalarA.
(i) A" = R’ for some rank-one.
(i) d(A, X) < 2forevery nonminimak.

T h eorem (Classn‘lcatlon of semisimplicity (:dlagonallzabllla/)

TFAE for nonscalarA.
() Alis semisimple

(1) d minimal B—A such that for anyf" — X — B can
find minimalM with Y —M —X.




Property recognition

Lemma (Dolinar-K.,submittea. TFAE for A ¢ MR(C)\C], for

n > 9.

(i) A’ = R' for somerankR = 1.

(ll) \Y (n — 2)—tup|eBl, .., B9 with d(BZ, BJ) = 4,
(¢ # 7)
existsY € A"\CI and nonscalar matriceX;, Zij
such that




Property recognition

(ll) \Y (n — 2)—tup|eBl, .., B9 with d(BZ, BJ) = 4,
(i # J)
existsY € A’\CI and nonscalar matrices;;, Z;;
such that 2

Bi—X;;—Y —Z;;—B;."

PARAPHRASING:

1A € M,(C)\CI such that (ii) holds for everyn — 2)
tupleBl, ..., B,—o with d(BZ, BJ) =4 (Z 7é ])



Property recognition

(II) \vi (TL — 2)-tupIeBl, - ,Bn_g with d(BZ, BJ) =
Bi—X;;—Y —Z;;— B;.Y

PARAPHRASING:

1A € M,(C)\CI such that (ii) holds for everyn — 2)
tupleBl, ..., B,—o with d(BZ, BJ) =4 (Z 7é ])

HOWEVER:VA € M, (C)\CI exists a(n — 1)-tuple
By, ..., B,_1 without "star-shaped" path through
nonscalan” ¢ A’



Back to isomorphism problem

Thus,I'(M,(C)) andI'(M,,(C)) are not isomorphic if



Back to isomorphism problem

Corollary. If I'(#B(H)) ~ T'(#(K)) then
dim H = dim K.

(and hence alsé8(H) ~ %(IC)) .
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Back to isomorphism problem

Corollary. If I'(#B(H)) ~ T'(#(K)) then
dim H = dim K.

(and hence alsé8(H) ~ %’(lC)) .

PROBLEM:
Let A be a primeC*-algebra withl'(A) ~ T'(#(H)) for
SomeH.

Does it follow thatd ~ Z(H)?
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Back to isomorphism problem

Corollary. If I'(#B(H)) ~ T'(#(K)) then
dim H = dim K.

(and hence alsé8(H) ~ %’(lC)) .

PROBLEM:
Let A be a primeC*-algebra withl'(A) ~ T'(#(H)) for
SomeH.

Does it follow thatd ~ Z(H)?



Property recognition again.

B € M, (F) given. Neighborhood oBb is

{X e T(M,(F)); d(B,X)=1}
— C(B)\ ({BYUF Id).

Much known ofC(B)!



Property recognition again.

B € M,(IF) given. Neighborhood ofs is

{X S F(Mn(F))a d(B,X) — 1}
—¢(B)\ ({B} UF Id)

Much known ofC(B)!

The other extreme: Whef( B, X)) = max?



Commuting graph-new results

Theo_r em 2 (Dolinar-ObIak-K) :
F =TFandn > 3. TFAE forB € M, (IF).

() B nonderogatory.
(1) B is minimale.cx) c c() impliesc(x) = c(B)).
(i) 4X withd(B, X) = 4.



Commuting graph-new results

Theorem 2 (polinar-oblak-k).

F=Fandn > 3. TFAE forB € M, (IF).
() B nonderogatory.

(1) B is minimale.cx) c c() impliesc(x) = c(B)).

(i) 4X withd(B, X) = 4.

o (1) = (117)

B nonderogatory, so possess cyclic vector. Hence:
WLOG B =C(f).
Adapting the proof of A.M.R.R;, can show( B, J) = 4.




Commuting graph-new results

Theo_r em 2 (Dolinar-ObIak-K) :
F=Fandn > 3. TFAE forB € M, (IF).

() B nonderogatory.
(1) B is minimale.cx) c c() impliesc(x) = c(B)).
(i) 4X withd(B, X) = 4.

® _I(Z) s _l(ZZZ) IDEA. Fix X, can find rank-on&? with RX = X R. Assume

T T

JIn -

B = ( - } ) Then,Z = ( xF a;:) satisfiesBZ = ZB. If R € My, 4n, (F)
Ino

is any rank-one, can find nonzetg so thatRZ = ZR. Hence, B—Z — R— X.



Commuting graph-new results

Nonderogatory matrices are the ones that come at
maximal distance.

Theorem 3 (crssicatonofrank-one. 1 FAE for nonscalatrA.
(l) Als C'eqUivalent to rank'One.e(A’ — R/’ for some rank-oneR).

(i) d(A, X) < 2for every derogatoryX .

Theorem 4 (Classmcatlon of semisimplicity (:dlagonallzablllg)/)
TFAE for nonscalarA.

(1) Als semisimple

() d nonderog.B —A such that for anyy’ — X —B
can find nonderogM withY — M —X.
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Proof that d(B, J) = 4

1 0 ......... 0 —m1

0 1 0 0 —mo
WLOG| B = | _

0O ......... 1 0 —mp_o




Proof that d(B, J) = 4

@ If B—X—Y —JthenY € C(J) = Poly(J).
WLOG, Y? = 0.



Proof that d(B, J) = 4

W if B—X—Y —JthenY € C(J) = Poly(.J).
WLOG, Y2 — 0.
=
O —r),(n—r) 0 D13
HENCE Y — 0 0(or ). (20—m) 0

0 0 O(n—r),(n—r)



Proof that d(B, J) = 4

@ If B—X—Y —JthenY € C(J) = Poly(J).

WLOG, Y2 = 0.
L]
O —r),(n—r) 0 D13
HENCE Y = 0 0(2r—n).(2r—n) 0

0 0 O(n—r),(n—r)
" Easy to calculate that = (Q?ij)lgi,jgg commutes withy” iff

* * *

X = [0(2r—n),(n—r) * *

O(n—r),(n—r) 0(n—r),(2r—n) *



Proof that d(B, J) = 4

* * *

B—X—Y—J, X = O2r—n),(n—r) * * |-

O(n—r),(n—r) 0(n—r),(2r—n) *

™ However,X also commutes wittB, so X = Z?:_()l \; B,



Proof that d(B, J) = 4

* * *
B—X—Y—J, X = O2r—n),(n—r) * *

O(n—r),(n—r) 0(n—r),(2r—n) *

™ However,X also commutes wittB, so X = Z?Lf”:_ol \; B,

" Considering the images of standard basis vectors,

: 0; ; iy
gi— | Qo0 K . (i=0,...,n—1).
Idp—i  K(n—i),i



Proof that d(B, J) = 4

* * *
B—X—Y—J, X = O2r—n),(n—r) * *

O(n—r),(n—r) 0(n—r),(2r—n) *

™ However,X also commutes wittB, so X = Z?Lf”:_ol \; B,

" Considering the images of standard basis vectors,

: 0; ; iy
gi— | Qo0 K . (i=0,...,n—1).
Idp—i  K(n—i),i

= (nl1)-entry of X must be zero, sa,,_1 = 0.



Proof that d(B, J) = 4

* * *
B—X—Y—J; X=|0@mm * %
O(n—r),(n—r) 0(n—r),(2r—n) *

However,X also commutes witl3, so X = Z,LT.":_Ol \; B,

Considering the images of standard basis vectors,

: 0; (n—s ii
gi— %o ki . (i=0,...,n—1).
Idn—i  K(n—i),

(n1)-entry of X must be zero, s@,,—1 = 0.

Inductively backwards: Assume,—1 = 0= Ap_2 =+ = A _(k_1)-

THEN, B* is the only power among the remaining powerdbith k-th subdiagonal
nonzero. In fact, this subdiagonal hiasn its every entry. Sincé < n — k, it intersects one of
the two zero blocks i, and\,,_, = 0. SoB scalar matrix___|
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