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Commuting graphs

A a magma,Z(A) = {x ∈ A; ax = xa ∀a ∈ A}.

Its commuting graph, Γ = Γ(A), is simple graph with

V (Γ) = A \ Z(A); X —Y iff

{

XY = Y X

X 6= Y
.

NOT EASY TO VISUALIZE!
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Commuting graphs: Γ(M2(Z2))

V (Γ) = A \ Z(A); E(Γ) = {(a, b); ab = ba, a 6= b}.
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Commuting graphs: Γ(M3(Z2))

V (Γ) = A \ Z(A); E(Γ) = {(a, b); ab = ba, a 6= b}.

GHM3HZ2LL
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Commuting graphs: Groups!

3

H123L

H123L-1

Sym3

8 or D8

i i-1 j j-1 k k-1

Q8 orD8

10D10 C3:C4 D12

C3 ⋊ C4 orD12

4

H234L H243L

H12LH34L

H13LH24L

H14LH23L

Alt4

HC4ÅC2L:C2 H2timesL
or C4:C4 or C8:C2 or C2ÅD8 or C2ÅQ8

C5:C4
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Commuting graphs: Groups!
SL2HZ3L Sym4

Alt5
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Fundamental question for Γ.

APPLICATIONS!?
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Answer: In Applications!

PHILOSOPHY: Often, a given algebra has "a lot of
(non)commuting pairs".

Theorem (Watkins (1976)). A linear bijection
φ : Mn(C) → Mn(C), (n ≥ 4) preserves commutativity.
THEN

{

φ(X) = cTXT−1 + f(X)I

φ(X) =
(

cTXT−1 + f(X)I
)t
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Answer: In Applications!

Theorem (Dolinar, K., submitted).
φ : Mn(C)

surjective
−−−−→ Mn(C), preserves commutativity.

Assumeφ(X) ∈ CI impliesX ∈ CI.

THEN: φ is surjective homomorphism of commuting
graph. Moreover,

{

φ(R) = γRT
−1RσT

φ(R) = γRT
−1(Rσ)

tT
; rankR = 1

γR ∈ C, Rσ :=
(

σ(rij)
)

ij
whereC

σ
−→ C field isomorphism.
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Answer: In Applications!

Theorem (Mohammedian 2010).
F = GF (pk) a finite field,R a unital ring.

IF Γ(R) ∼ Γ(M2(F)) THEN R ∼ M2(F).
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Answer: In Applications!

Theorem (Mohammedian 2010).
F = GF (pk) a finite field,R a unital ring.

IF Γ(R) ∼ Γ(M2(F)) THEN R ∼ M2(F).

Theorem (Solomon, Woldar 2014).
S a finite, simple, nonabelian group;G a group.

IF Γ(S) ∼ Γ(G) THEN S ∼ G.
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Basic problems for Γ

Homomorphisms (=commutativity preserving maps
without linearity).

Isomorphism problem.
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Basic problems for Γ

Homomorphisms (=commutativity preserving maps
without linearity).

Isomorphism problem.

Diameter/connectedness problem.

Realization problem.

Structure recognition problem.
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Commuting graph of B(H)

NOTATIONS:

• H a complex Hilbert space,dimH ≤ ∞.
• B(H) Banach algebra of bounded operators onH.
• Γ = Γ(B(H)).
• A′ := {X ∈ B(H); AX = XA} a commutant.

• A—B —C — . . . (a path inΓ)
means(AB −BA) = 0 = (BC − CB) = . . . .

• Eij ∈ Mn(C) a STD matrix unit.
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Properties

dimH = 2. THEN:Γ(M2(C)) is not connected.

PROOF

( 1 0
0 0 )

′ = ( ∗ 0
0 ∗ ), and( ∗ 0

0 ∗ )
′ = ( ∗ 0

0 ∗ ).
So,E11 — . . .—E12 does not exists.
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Properties

dimH = 2. THEN:Γ(M2(C)) is not connected.

PROOF

( 1 0
0 0 )

′ = ( ∗ 0
0 ∗ ), and( ∗ 0

0 ∗ )
′ = ( ∗ 0

0 ∗ ).
So,E11 — . . .—E12 does not exists.

Actually,Γ(M2(C)) = ∞K∞!
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Properties

dimH = 2. THEN:Γ(M2(C)) is not connected.

(Akbari-Mohammadian-Radjavi-Raja ’06)dimH = n ≥ 3. THEN:
Γ(Mn(C)) always connected with diameter4.

PARTIAL PROOF

A path of length four betweenA,B:

A has e.vectorx (corresponding to e.valueλ).

Atr has e.vectorf (again to e.valueλ).

Hence,A—(xf tr). Likewise existsy, g with (ygtr)—B.

∃ nonzeroz, h with f trz = 0 = gtrz andhtrx = 0 = htry.

THEN, A—(xf tr)—(zhtr)—(ygtr)—B.

Can showd(J tr, J) = 4.
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Properties

dimH = 2. THEN:Γ(M2(C)) is not connected.

(Akbari-Mohammadian-Radjavi-Raja ’06)dimH = n ≥ 3. THEN:
Γ(Mn(C)) always connected with diameter4.

If F 6= F̄,
THEN: A,B may lack e.vectors, hence proof fails!

Worse still: commuting graph may be disconnected.
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Commuting graph of B(H)

Theorem (Ambrozie-Brǎcič-Müller-K.). If H is non-separable,
THENdiam(Γ) = 2.
PROOF

ChooseA,B ∈ B(H)\CI.

DefineW := Semigp{I, A,A∗, B,B∗}, fix nonzerox ∈ H.

N :=
∨

Wx is closed, separable subspace, and containsx.

HENCE:N is a proper reducing subspace forA andB.

Let P be orthogonal projection onN .

SinceN is reducing,A—P —B.
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Commuting graph of B(H)

Theorem (Ambrozie-Brǎcič-Müller-K.). If H = ℓ2 is separable,
THENdiam(Γ) = ∞.
Moreover,∃T ∈ B(H) such that

T ′ = X ′ X ∈ T ′\CI.
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Commuting graph of B(H)

Theorem (Ambrozie-Brǎcič-Müller-K.). dimH = ∞. THEN,

X Finite rank operators,
X operators with disconnected spectrum,
X nonscalar operators similar to

(i) normal or (ii) to C0-contractions or
(iii) to weighed shifts or (iv) to partial isometries

are in the same connected component ofΓ(B(H)).
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Realizability problem

Theorem (Realizability,Ambrozie,Brǎcič,K., Müller). LetΓ be a
simple graph. Then,Γ is isomorphic to a commuting
subgraph ofB(H), spanned by rank-two projections.
If Γ is finite, thendimH < ∞.

Remark.Similar question was considered by T. Pisanski
for realizabilitry of finite graphs as commuting graphs of
GROUPS.
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Realizability problem

Theorem (NonrealizabilityAmbrozie,Brǎcič,K., Müller). The graph
on |Γ| = 2n2 + 1 vertices which cannot be embedded as
a commuting graph ofMn(C).

c1 c2 c3 cn2

v1 v2 v3 vn2 v1+n2

Applications of Commuting graphs – p. 16



Property recognition

Theorem (Dolinar,Oblak,K.).
n ≥ 3. TFAE forB ∈ Mn(C).

(i) B nonderogatory.

(ii) B is minimal(i.e. X′ ⊆ B′ impliesX′ = B′).

(iii) ∃X with d(B,X) = 4.
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Property recognition

Theorem (Dolinar,Oblak,K.).
n ≥ 3. TFAE forB ∈ Mn(C).

(i) B nonderogatory.

(ii) B is minimal(i.e. X′ ⊆ B′ impliesX′ = B′).

(iii) ∃X with d(B,X) = 4.

• (i) ⇐⇒ (ii) by Šemrl.

• ¬(i) =⇒ ¬(iii) IDEA. Fix X, can find rank-oneR with RX = XR. Assume

B =



 Jn1

Jn2



. Then,Z =



 Jn1

x1 x2

x3
Jn2

x4



 satisfiesBZ = ZB. If R ∈ Mn1+n2
(F)

is any rank-one, can find nonzeroxi so thatRZ = ZR. Hence,B —Z —R—X.
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Property recognition

Theorem (Dolinar,Oblak,K.).
n ≥ 3. TFAE forB ∈ Mn(C).

(i) B nonderogatory.

(ii) B is minimal(i.e. X′ ⊆ B′ impliesX′ = B′).

(iii) ∃X with d(B,X) = 4.

• (i) =⇒ (iii) WLOG B =
⊕ℓ

j=1
Jmj

(µj)

in upper-triangular Jordan form. Adapting the proof of
A.M.R.R., can show:d(B, J tr) = 4.
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Property recognition

Theorem (Dolinar,Oblak,K.).
n ≥ 3. TFAE forB ∈ Mn(C).

(i) B nonderogatory.

(ii) B is minimal(i.e. X′ ⊆ B′ impliesX′ = B′).

(iii) ∃X with d(B,X) = 4.

Actually, (ii) =⇒ (iii) follows from a more general fact:
Theorem (D.O.K.). A =

⊕k

i=1 Jni
(λi), B =

⊕ℓ

j=1 Jmj
(µj)

nonderogatory of any given type
n1 + · · ·+ nk = n = m1 + · · ·+mℓ. THEN,

d(A,S−1BS) = 4;
(

S=

(

1

xi−yj

)

ij

)

.
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Property recognition

Minimal matrices are the ones that come at maximal
distance.

Theorem (Classification of rank-one). TFAE for nonscalarA.

(i) A′ = R′ for some rank-oneR.

(ii) d(A,X) ≤ 2 for every nonminimalX.

Theorem (Classification of semisimplicity (=diagonalizability)).
TFAE for nonscalarA.

(i) A is semisimple

(ii) ∃ minimalB —A such that for anyY —X —B can
find minimalM with Y —M —X.
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Property recognition

Lemma (Dolinar-K., submitted). TFAE forA ∈ Mn(C)\CI, for
n ≥ 5:

(i) A′ = R′ for somerankR = 1.

(ii) ∀ (n− 2)-tupleB1, . . . , Bn−2 with d(Bi, Bj) = 4,
(i 6= j)
existsY ∈ A′\CI and nonscalar matricesXij, Zij

such that

Bi —Xij —Y —Zij —Bj.

1

2

3

4

5

6

Y

B

B

B

B

B

B
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Property recognition

(ii) ∀ (n− 2)-tupleB1, . . . , Bn−2 with d(Bi, Bj) = 4,
(i 6= j)
existsY ∈ A′\CI and nonscalar matricesXij, Zij

such that

Bi —Xij —Y —Zij —Bj.

1

2

3

4

5

6

Y

B

B

B

B

B

B

PARAPHRASING:

∃A ∈ Mn(C)\CI such that (ii) holds for every(n− 2)
tupleB1, . . . , Bn−2 with d(Bi, Bj) = 4 (i 6= j).
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Property recognition

(ii) ∀ (n− 2)-tupleB1, . . . , Bn−2 with d(Bi, Bj) = 4,. . .

Bi —Xij —Y —Zij —Bj.

1

2

3

4

5

6

Y

B

B

B

B

B

B

PARAPHRASING:

∃A ∈ Mn(C)\CI such that (ii) holds for every(n− 2)
tupleB1, . . . , Bn−2 with d(Bi, Bj) = 4 (i 6= j).

HOWEVER:∀A ∈ Mn(C)\CI exists a(n− 1)-tuple
B1, . . . , Bn−1 without "star-shaped" path through
nonscalarY ∈ A′.

Applications of Commuting graphs – p. 19



Back to isomorphism problem

Thus,Γ(Mn(C)) andΓ(Mm(C)) are not isomorphic if
n 6= m.
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Back to isomorphism problem

Corollary. If Γ(B(H)) ∼ Γ(B(K)) then
dimH = dimK.
(and hence alsoB(H) ∼ B(K)).
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Back to isomorphism problem

Corollary. If Γ(B(H)) ∼ Γ(B(K)) then
dimH = dimK.
(and hence alsoB(H) ∼ B(K)).

PROBLEM:
LetA be a primeC∗-algebra withΓ(A) ∼ Γ(B(H)) for
someH.

Does it follow thatA ∼ B(H)?
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Back to isomorphism problem

Corollary. If Γ(B(H)) ∼ Γ(B(K)) then
dimH = dimK.
(and hence alsoB(H) ∼ B(K)).

PROBLEM:
LetA be a primeC∗-algebra withΓ(A) ∼ Γ(B(H)) for
someH.

Does it follow thatA ∼ B(H)?
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Property recognition again.

B ∈ Mn(F) given. Neighborhood ofB is

{X ∈ Γ(Mn(F)); d(B,X) = 1}

= C(B) \ ({B} ∪ F Id).

Much known ofC(B)!

Applications of Commuting graphs – p. 22



Property recognition again.

B ∈ Mn(F) given. Neighborhood ofB is

{X ∈ Γ(Mn(F)); d(B,X) = 1}

= C(B) \ ({B} ∪ F Id).

Much known ofC(B)!

The other extreme: Whend(B,X) = max?
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Commuting graph-new results

Theorem 2 (Dolinar-Oblak-K.).
F = F̄ andn ≥ 3. TFAE forB ∈ Mn(F).

(i) B nonderogatory.

(ii) B is minimal(i.e. C(X) ⊆ C(B) impliesC(X) = C(B)).

(iii) ∃X with d(B,X) = 4.
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Commuting graph-new results

Theorem 2 (Dolinar-Oblak-K.).
F = F̄ andn ≥ 3. TFAE forB ∈ Mn(F).

(i) B nonderogatory.

(ii) B is minimal(i.e. C(X) ⊆ C(B) impliesC(X) = C(B)).

(iii) ∃X with d(B,X) = 4.

• (i) =⇒ (iii)
B nonderogatory, so possess cyclic vector. Hence:
WLOG B = C(f).
Adapting the proof of A.M.R.R., can show:d(B, J) = 4.
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Commuting graph-new results

Theorem 2 (Dolinar-Oblak-K.).
F = F̄ andn ≥ 3. TFAE forB ∈ Mn(F).

(i) B nonderogatory.

(ii) B is minimal(i.e. C(X) ⊆ C(B) impliesC(X) = C(B)).

(iii) ∃X with d(B,X) = 4.

• ¬(i) =⇒ ¬(iii) IDEA. Fix X, can find rank-oneR with RX = XR. Assume

B =



 Jn1

Jn2



. Then,Z =



 Jn1

x1 x2

x3
Jn2

x4



 satisfiesBZ = ZB. If R ∈ Mn1+n2
(F)

is any rank-one, can find nonzeroxi so thatRZ = ZR. Hence,B —Z —R—X.
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Commuting graph-new results

Nonderogatory matrices are the ones that come at
maximal distance.

Theorem 3 (Classification of rank-one). TFAE for nonscalarA.

(i) A is C-equivalent to rank-one (i.e. A′ = R′ for some rank-oneR).

(ii) d(A,X) ≤ 2 for every derogatoryX.

Theorem 4 (Classification of semisimplicity (=diagonalizability)).
TFAE for nonscalarA.

(i) A is semisimple

(ii) ∃ nonderog.B —A such that for anyY —X —B
can find nonderog.M with Y —M —X.
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Proof that d(B, J) = 4

WLOG B =





0 . . . . . . . . . . . . 0 −m0

1 0 . . . . . . . . . 0 −m1

0 1 0 . . . . 0 −m2

...
. . .

...
...

0 . . . . . . . . . 1 0 −mn−2

0 0 . . . . . 0 1 −mn−1





.
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Proof that d(B, J) = 4

If B —X —Y — J thenY ∈ C(J) = Poly(J).

WLOG,Y 2 = 0.
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Proof that d(B, J) = 4

If B —X —Y — J thenY ∈ C(J) = Poly(J).

WLOG,Y 2 = 0.

HENCE Y =





0(n−r),(n−r) 0 D̂13

0 0(2r−n),(2r−n) 0

0 0 0(n−r),(n−r)





Applications of Commuting graphs – p. 28



Proof that d(B, J) = 4

If B —X —Y — J thenY ∈ C(J) = Poly(J).

WLOG,Y 2 = 0.

HENCE Y =





0(n−r),(n−r) 0 D̂13

0 0(2r−n),(2r−n) 0

0 0 0(n−r),(n−r)





Easy to calculate thatX =
(
xij

)
1≤i,j≤3

commutes withY iff

X =





⋆ ⋆ ⋆

0(2r−n),(n−r) ⋆ ⋆

0(n−r),(n−r) 0(n−r),(2r−n) ⋆



 .
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Proof that d(B, J) = 4

B —X —Y — J ; X =





⋆ ⋆ ⋆

0(2r−n),(n−r) ⋆ ⋆

0(n−r),(n−r) 0(n−r),(2r−n) ⋆



 .

However,X also commutes withB, soX =
∑n−1

i=0 λiB
i.
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Proof that d(B, J) = 4

B —X —Y — J ; X =





⋆ ⋆ ⋆

0(2r−n),(n−r) ⋆ ⋆

0(n−r),(n−r) 0(n−r),(2r−n) ⋆



 .

However,X also commutes withB, soX =
∑n−1

i=0 λiB
i.

Considering the images of standard basis vectors,

Bi =



0i,(n−i) ⋆i,i

Idn−i ⋆(n−i),i



 ; (i = 0, . . . , n− 1).
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Proof that d(B, J) = 4

B —X —Y — J ; X =





⋆ ⋆ ⋆

0(2r−n),(n−r) ⋆ ⋆

0(n−r),(n−r) 0(n−r),(2r−n) ⋆



 .

However,X also commutes withB, soX =
∑n−1

i=0 λiB
i.

Considering the images of standard basis vectors,

Bi =



0i,(n−i) ⋆i,i

Idn−i ⋆(n−i),i



 ; (i = 0, . . . , n− 1).

(n1)-entry ofX must be zero, soλn−1 = 0.
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Proof that d(B, J) = 4

B —X —Y — J ; X =





⋆ ⋆ ⋆

0(2r−n),(n−r) ⋆ ⋆

0(n−r),(n−r) 0(n−r),(2r−n) ⋆



 .

However,X also commutes withB, soX =
∑n−1

i=0 λiB
i.

Considering the images of standard basis vectors,

Bi =



0i,(n−i) ⋆i,i

Idn−i ⋆(n−i),i



 ; (i = 0, . . . , n− 1).

(n1)-entry ofX must be zero, soλn−1 = 0.

Inductively backwards: Assumeλn−1 = 0 = λn−2 = · · · = λn−(k−1).

THEN,Bk is the only power among the remaining powers ofB with k-th subdiagonal

nonzero. In fact, this subdiagonal has1 on its every entry. Since0 < n− k, it intersects one of

the two zero blocks inX, andλn−k = 0. SoB scalar matrix.
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