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1. Introduction and motivation

We consider the following class of planar autonomous differential systems
depending on a real parameter µ

dx

dt
= y ,

dy

dt
= −x + µ

3∑
j=0

hj(x , µ)y j . (1)

We assume the functions hj , j = 0, ..., 3, to be continuous in both
variables and continuously differentiable in the first variable, moreover we
suppose

h3(x , µ) 6≡ 0. (2)

For µ = 0, system (1) presents a linear conservative system having the
first integral x2 + y2 = c2 > 0, where c is any real number. If µ crosses
zero, then from some circles x2 + y2 = c2

i limit cycles can bifurcate.
Limit cycle represents an isolated closed trajectory of system (1).



A famous example is the van der Pol equation

ẍ + µ(x2 − 1)ẋ + x = 0, (3)

where a unique limit cycle bifurcates from the circle x2 + y2 = 2 as µ
crosses zero.
Concerning this bifurcation problem the question arises: How many limit
cycles of system (1) can bifurcate from the continuum of circles
surrounding the origin as µ crosses zero.
Here we address some inverse problem: How to construct functions
hj , j = 0, ..., 3, such that system (1) has not more than a given number N
of limit cycles on the whole phase plane for µ belonging to some (global)
interval M which M contains the value 0.
Our approach to treat this problem is based on the construction of
suitable Dulac-Cherkas functions.



2. The Dulac-Cherkas (D-C) function and its main
properties

We recall the definition of a Dulac function for the planar differential
system

dx

dt
= P(x , y),

dy

dt
= Q(x , y) (4)

in some open region G ⊂ R2.

Definition 1
Let P,Q ∈ C 1(G,R), let X be the vector field defined by (4). A function
B ∈ C 1(G,R) is called a Dulac function of (4) in G if the expression

div(BX ) ≡ ∂(BP)

∂x
+
∂(BQ)

∂y
≡ (gradB,X ) + B divX

does not change sign in G and vanishes only on a set N of measure zero.
The existence of a Dulac function implies the following estimate of the
number of limit cycles of system (4) in G.



Proposition 1
Let G be a p-connected (p ≥ 1) region in R2, let P,Q ∈ C 1(G,R). If
there is a Dulac function B of (4) in G, then (4) has not more than p − 1
limit cycles in G.
However, the method itself provides no way for the construction of the
function B and for the localization of limit cycles lying in the region G.
The most applied forms of B were xayb, a, b ∈ R and ex

ayb

.
The method of Dulac function has been generalized in different ways.
One generalization is due to L. A. Cherkas in 1997. The corresponding
generalized Dulac function, which we called Dulac-Cherkas function, is
defined as follows.

Definition 2
Let P,Q ∈ C 1(G,R). A function Ψ ∈ C 1(G,R) is called a Dulac-Cherkas
function of system (4) in G if there exists a real number k 6= 0 such that

Φ := (grad Ψ,X ) + kΨ div X > 0 (< 0) in G. (5)

Lemma 1
Let Ω ⊂ D be connected, let Ψ be a DC function in G. Then B := |Ψ|1/k
is a Dulac function in each subregion of G where Ψ is positive or negative.



The main properties of D-C function can be described with the help of
the subset W of G defined by

W := {(x , y) ∈ G : Ψ(x , y) = 0}. (6)

Lemma 2
Any trajectory of system (4) meeting the curve W intersects W
transversally.

Lemma 3
The curve W does not contain any equilibrium of system (4).



Lemma 4
Let W1 and W2 be two different smooth local open branches of the curve
W such that W1 ∪W2 is not connected, that is, ∂W1 ∩ ∂W2 is empty.
Then W1 and W2 do not meet.

Lemma 5
The curve W decomposes the region G in subregions on which Ψ is
definite and the transition from one subregion to an adjacent subregion is
connected with a sign change of Ψ.

Theorem 1
Let Ψ be a DC function of system (4) in G. Then any limit cycle of
system (4) which is entirely located in G does not intersect the curve W .



The following facts can be found in [Cherkas L.A., 1997] and
[Grin A.A., Schneider K.R. 2007].

Theorem 2
Let Ψ be a Dulac-Cherkas function of (4) in G. Then any limit cycle Γ of
(4) in G is hyperbolic and its stability is determined by the sign of the
expression kΦΨ on Γ.
The sign of k plays the essential role.

Theorem 3
Let G be a p-connected region, let Ψ be a D-C function of (4) for k < 0
in G such that W has s ovals in G. Then system (4) has at most
p − 1 + s limit cycles in G, and all limit cycles are hyperbolic.

Remark 1
Condition (5) can be relaxed by assuming that Φ may vanish in G on a
set of measure zero, and that no simply closed curve (oval) of this set is
a limit cycle of (4).



This approach was exploited also by

Gasull A., Giacomini H. A new criterion for controlling the number of
limit cycles of some generalized Liénard equations (2002),

Gasull A., Giacomini H. Upper bounds for the number of limit cycles
through linear differential equations (2006),

Gasull A., Giacomini H., Llibre J. New criteria for the existence and
non-existence of limit cycles in Liénard differential systems (2008),

Gasull A., Giacomini H. Upper bounds for the number of limit cycles of
some planar polynomial differential systems (2008).

and other papers.



3. General idea for the application of DC function
to some classes of system (4)

For strip region G = Ωx = {(x , y) : x ∈ [x1, xN0 ], y ∈ R} we construct the
function Ψ in the form

Ψ(x , y) =
n∑

j=0

Ψj(x)y j , Ψj ∈ C 1(R), (7)

for systems

dx

dt
= y ,

dy

dt
=

l∑
j=0

hj(x)y j , hj ∈ C 0(R),

with l ≥ 1.



Φ(x , y) ≡
m∑
i=0

Φi (x)y i , (8)

where Φi (x) are functions of the known coefficient functions
h0(x), ..., hl(x), of the unknown coefficient functions Ψ0(x), ...,Ψn(x), of
their first derivatives Ψ′0(x), ...,Ψ′n(x), and of k .
The highest power m of y in (20) is m = max{n + 1, n + l − 1}.
To determine the functions Ψj(x), j = 0, ..., n, and the real number k we
reduce Φ(x , y) to the following form

Φ(x , y) = Φ0(x),

satisfying relations

Φi (x) ≡ 0 for i = 1, ...,m. (9)



For l = 1 and l = 2 the relations (9) represent a system of n + 1 linear
differential equations to determine the n + 1 functions Ψj , j = 0, ..., n.
In case l = 1 we have Liènard system

ẋ = y , ẏ = h0(x) + h1(x)y , (10)

and the system (9) can be solved successively by simple quadratures,
starting with Ψn.

0 ≡ Ψ′n(x),

0 = Ψ′n−1(x) + (k + n)h1(x)Ψn(x),

0 ≡ Ψ′n−2(x) + (k + n − 1)h1(x)Ψn−1(x) + nh0(x)Ψn(x),

.....................................

0 ≡ Ψ′1(x) + (k + 2)h1(x)Ψ2(x) + 3h0(x)Ψ3(x),

0 ≡ Ψ′0(x) + (k + 1)h1(x)Ψ1(x) + 2h0(x)Ψ2(x).

(11)

The general solution depends on n + 1 integration constants and on the
constant k .



In case l = 2 the system (9) can also be integrated by solving
inhomogeneous linear differential equations, starting with Ψn.

0 ≡ Ψ′n(x) + (2k + n)h2(x)Ψn(x),

0 ≡ Ψ′n−1(x) + (2k + n − 1)h2(x)Ψn−1(x)

+ (k + n)h1(x)Ψn(x),

0 ≡ Ψ′n−2(x) + (2k + n − 2)h2(x)Ψn−2(x)

+ (k + n − 1)h1(x)Ψn−1(x) + nh0(x)Ψn(x),

.....................................

0 ≡ Ψ′1(x) + (2k + 1)h2(x)Ψ1(x)

+ (k + 2)h1(x)Ψ2(x) + 3h0(x)Ψ3(x),

0 = Ψ′0(x) + 2kh2(x)Ψ0(x)

+ (k + 1)h1(x)Ψ1(x) + 2h0(x)Ψ2(x).

(12)

The functions Ψj depend on the parameter k , but we get no restriction
on k in the process of solving this system. To fulfill the condition (5) we
have to choose k and the integration constants appropriately.



In case l = 3 (Kukles system) the first equation of the system (9) is an
algebraic equation which determines the constant k uniquely as k = − n

3 .
The remaining equations represent a system of n + 1 linear differential
equations. Its general solution depends on n + 1 integration constants
which can be used to try to fulfill the relations (5).

0 ≡ (n + 3k)h3(x)Ψn(x),

0 ≡ Ψ′n(x) + (2k + n)h2(x)Ψn(x)

+ (n − 1 + 3k)h3(x)Ψn−1(x),

0 ≡ Ψ′n−1(x) + (n − 1 + 2k)h2(x)Ψn−1(x)

+ (n + k)h1(x)Ψn(x) + (n − 2 + 3k)h3(x)Ψn−2,

0 ≡ Ψ′n−2(x) + (2k + n − 2)h2(x)Ψn−2(x)

+ (k + n − 1)h1(x)Ψn−1(x) + nh0(x)Ψn(x)

+ (n − 3 + 3k)h3(x)Ψn−3(x),

.....................................

0 ≡ Ψ′1(x) + (1 + 2k)h2(x)Ψ1(x) + 3kh3(x)Ψ0(x)

+ (2 + k)h1(x)Ψ2(x) + 3h0(x)Ψ3(x),

0 ≡ Ψ′0(x) + 2kh2(x)Ψ0(x)

+ (k + 1)h1(x)Ψ1(x) + 2h0(x)Ψ2(x).

(13)



In the case of system (1) (l = 3, n = 2)

Φ4(x , µ) ≡ (2 + 3k)µh3(x , µ)Ψ2(x , µ),

Φ3(x , µ) ≡ Ψ′2(x , µ)

+ (2k + 2)µh2(x , µ)Ψ2(x , µ) + (1 + 3k)µh3(x , µ)Ψ1(x , µ),

Φ2(x , µ) ≡ Ψ′1(x , µ) + (1 + 2k)µh2(x , µ)Ψ1(x , µ)

+ (2 + k)µh1(x , µ)Ψ2(x , µ) + 3kµh3(x , µ)Ψ0(x , µ),

Φ1(x , µ) ≡ Ψ′0(x , µ) + 2kµh2(x , µ)Ψ0(x , µ)

+ (k + 1)µh1(x , µ)Ψ1(x , µ) + 2µh0(x , µ)Ψ2(x , µ)− 2xΨ2(x , µ).

(14)

In all cases of l and n

Φ0(x , µ) ≡ −Ψ1(x , µ)x + µ
(
kΨ0(x , µ)h1(x , µ) + Ψ1(x , µ)h0(x , µ)

)
.

(15)



For such purpose we can apply the reduction to the linear programming
problem

L→ max,
n∑

i=0

Ci Φ̃i (xl)− L ≥ 0, |C | ≤ 1, (16)

xl ∈ [x1, xN0 ], i = 1,N0.
If this is not possible we can reduce function Φ(x , y) to one of the
following forms

Φ(x , y) = Φ0(x) + Φ1(x)y + Φ2(x)y2,

Φ(x , y) = Φ0(x) + Φ2(x)y2 + Φ4(x)y4

The paper [Cherkas L.A., Grin A., 2010] contains two algorithms to
construct Φ(x , y) > 0: for odd yp all Φp(x) = 0, for even yp all
Φp(x) ≥ 0 and Φ0(x) > 0.
Or we have to look for corresponding conditions on the functions hi .



For the system

ẋ = yP0(x), ẏ = h0(x) + h1(x)y + h2(x)y2 + h3y
3, (17)

with P0(x) ∈ C 1, to fulfil Φ(x , y) > 0 we require |Φw (x)| < ε for odd
yw , ε sufficiently small and Φv (x) ≥ 0 for even y v and Φ0(x) > 0. In this
case we take all Ψi (x) in the form Ψi (x) =

∑mi

j=0 Cijx
j , Cij ∈ R, mi ∈ N

and solve the linear programming problem

L→ max ,
m∑
j=0

CjΦvj(xl)− L > 0, |
m∑
j=0

CjΦwj(xl)| − ε < 0,

the vector Cj consists of coefficients Cij from all Ψi (x) and has dimension
m = m1 + . . .+ mn + n.

Example 1
For system (17) with P0(x) = 1 + x2/6, h0(x) = −x(1 + x2),
h1(x) = 1− x2, h2(x) = (x − 1)/100, h3 = −1 function Ψ is constructed
by using k = −1, n = 2, m1 = 6, m2 = 7, m3 = 8, ε = 0.0000001,
N0 = 100, [−1.5; 1.5]. For the solution (C∗, L∗) the equation Ψ = 0
defines unique oval and polynomial Φ(x , y) > 0 on the whole plane. It
allows to prove the uniqueness of limit cycle globally.



In case l ≥ 4 system (9) consist of n + 1 linear differential equations and
l − 2 algebraic equations to determine k and the functions Ψ0, ...,Ψn.
Thus, this system has generically no solution.
In [Cherkas L.A., Grin A., Schneider K.R. 2011] it was shown that
under additional conditions on the functions hi system (9) has a
nontrivial solution which satisfies the inequalities (5).
In [X. Ioakim 2014] it is proved the uniqueness of the limit cycle on the
whole phase plane for generalized Van der Pol system

ẋ = y , ẏ = −x + εy2m+1(1− x2q),

where ε is a small parameter tending to zero, m and q ∈ N.
To prove this result for global interval of ε we constructed
Ψ = x2 + y2 − 1. The corresponding function
Φ = 2εy2m(x2 − 1)2(1 + x2 + x4 + ...+ x2q−2).
In the same manner for the system

ẋ = y2m−1, ẏ = −x2q−1 + εy2m+1(1− x2q),

where unperturbed system has the Hamiltonian x2q/2q + y2m/2m = c
we constructed Ψ = m/q(x2q + q/py2m − 1). The corresponding
function Φ = y2mε2m2c2/q(x2q − 1)2.



For the sequel we suppose G to be a simply connected region containing
the origin and assume that the Dulac-Cherkas function Ψ is a polynomial
in y

Ψ(x , y , µ) =
n∑

j=0

Ψj(x , µ)y j (18)

with

Ψn(x , µ) 6≡ 0. (19)

Then, the corresponding function Φ is in case of system (1)

Φ(x , y , µ) =
m∑
i=0

Φi (x , µ)y i , m = n + 2. (20)

We consider the cases n = 1 and n = 2. Thus, system (1) has no limit
cycle in case n = 1 and at most one limit cycle in case n = 2 in G.



4. Construction of systems with no limit cycle

In the case n = 1 we have the representations

Ψ(x , y , µ) = Ψ0(x , µ) + Ψ1(x , µ)y (21)

with

Ψ1(x , µ) 6≡ 0. (22)

Φ(x , y , µ) =
3∑

i=0

Φi (x , µ)y i . (23)

where

Φ0(x , µ) ≡ −Ψ1(x , µ)x + µ
(
kΨ0(x , µ)h1(x , µ) + Ψ1(x , µ)h0(x , µ)

)
.

(24)

The relation for the function Φ0 is valid for any n.
To derive conditions on the coefficient functions hj such that one of the
inequalities in (5) is fulfilled we study the following cases
Φ(x , y , µ) ≡ Φ0(x , µ) and Φ(x , y , µ) ≡ Φ0(x , µ) + Φ2(x , µ)y2.



4.1. Nonexistence of limit cycles if Φ does not depend on y

If we set

Ψ0(x , µ) := q 6= 0, Ψ1(x , µ) := µx (25)

we derive conditions on k and the functions hj .

k = −1
3
. (26)

h3(x , µ) :=
3q + µ2x2h1(x , µ)

3q2 . (27)

h2(x , µ) :=
µxh1(x , µ)

q
. (28)



Taking into account

Φ(x , y , µ) ≡ Φ0(x , µ) ≡ −µ
(
x2 +

q

3
h1(x , µ)− µxh0(x , µ)

)
. (29)

and that system (1) has no limit cycle for µ = 0, we have the result:

Theorem 4
Let q be any given real number different from zero, let
h0, h1 : R× R→ R be continuous functions, let h2 and h3 be defined by
(28) and (27), respectively. If there exists an interval M such that for
µ ∈ M the expression

−x2 − q

3
h1(x , µ) + µxh0(x , µ)

has the same sign for all x ∈ R and does not vanish identically for any
x-interval, then system (1) has no limit cycle for µ ∈ M.



As an example we consider the case

q = −3, h1(x , µ) ≡ x2 (30)

and obtain Φ(x , y , µ) ≡ µ2xh0(x , µ) and Ψ(x , µ) ≡ q + µxy . Thus, we
have:

Corollary 1
The autonomous system

dx

dt
= y ,

dy

dt
= −x + µ

(
h0(x , µ) + x2y − µ

3
x3y2 +

−9 + µ2x4

27
y3
)

has no limit cycle for any µ provided that for any µ 6= 0 the function
xh0(x , µ) does not change sign for x ∈ R and does vanish identically for
any x-interval.



The way we used to derive conditions for system (1) to have no limit
cycle can be characterized as an algebraic method: we prescribe Ψ0 and
Ψ1 and determine conditions for the coefficient functions hj , 0 ≤ j ≤ 3,
by solving the identities for Φ3(x , µ), Φ2(x , µ), Φ1(x , µ) in (9) and the
inequality Φ0(x , µ) > 0 (< 0)
Now we describe another so called algebraic-differential approach based
on a combination of the approach used above and the method used in
[Cherkas L.A., Grin A.A., Shcneider K.R. 2011]. As in the preceding
approach we first determine the number k in order to satisfy the identity
Φ3(x , µ) ≡ 0. Then we solve the identities Φ2(x , µ) ≡ 0 and
Φ1(x , µ) ≡ 0 as a system of non-homogeneous linear differential
equations for Ψ0 and Ψ1. In general it is not possible to get an explicit
solution of this system. Under the assumption that we are able to obtain
a solution of that system as a function of the coefficient functions hj , we
can plug in this solution into the inequality (5). By this way we derive
conditions on the coefficient functions hj implying that Ψ is a
Dulac-Cherkas function.



As an example we consider system (1) under the condition

h2(x , µ) ≡ 0. (31)

From the first identity in (9) we get k = −1/3, the identities for Φ2 and
Φ1 read

Φ2(x , µ) ≡ Ψ′1(x , µ)− µh3(x , µ)Ψ0(x , µ) ≡ 0,

Φ1(x , µ) ≡ Ψ′0(x , µ) +
2
3
µh1(x , µ)Ψ1(x , µ) ≡ 0.

(32)

We consider (32) as a system of linear homogeneous differential
equations to determine Ψ0 and Ψ1. If we look for a solution of system
(32) satisfying

Ψ1(x , µ) ≡ κΨ0(x , µ), (33)

where κ is some constant which can depend on the parameter µ, we
obtain the condition

h3(x , µ) ≡ −2
3
κ2h1(x , µ). (34)



Therefore, we get from the last differential equation in (32) the special
solution

Ψ0(x , µ) ≡ exp
(
− 2

3
µκ

∫ x

h1(ξ, µ)dξ
)
. (35)

Finally, we obtain

Φ0(x , µ) = −µ
2

3
exp

(µ2

9
x2
)
h0(x , µ), Ψ(x , y , µ) = exp

(µ2

9
x2
)(

1−µ
3
y
)
.

Thus, we have the result:

Theorem 5
Let h0 : R× R→ R be continuous function and for any µ does not
change sign and does not vanish identically in x on any x-interval, then
the autonomous system

dx

dt
= y ,

dy

dt
= −x + µ

(
h0(x , µ) + xy − 2

27
µ2xy3

)
,

(36)

has no limit cycle in the phase plane for any µ.



4.2. Nonexistence of limit cycles if Φ3 and Φ1

vanish identically

In what follows we have

Φ(x , y , µ) = Φ0(x , µ) + Φ2(x , µ)y2. (37)

As in the subsection before, we suppose Ψ(x , y , µ) ≡ q + µxy . Solving
the identities Φ3 ≡ 0 and Φ1 ≡ 0 we get

Φ2(x , µ) ≡ µ
(
1− qh3(x , µ) +

µ2

3q
x2h1(x , µ)

)
, (38)

Φ0(x , µ) ≡ µ
(
− x2 − q

3
h1(x , µ) + µxh0(x , µ)

)
. (39)



The relation
Φ2(x , µ)Φ0(x , µ) ≥ 0, (40)

is a sufficient condition for Φ to have the same sign. Using (38) and (39)
it reads

µ2
(
− x2 − q

3
h1(x , µ) + µxh0(x , µ)

)
×
(
1− qh3(x , µ) +

µ2

3q
x2h1(x , µ)

)
≥ 0.

(41)

Theorem 6
Let q be any given real number different from zero, let
h0, h1, h3 : R× R→ R be continuous functions, let the function h2 be
defined by (28). Suppose the existence of an interval M such that for
µ ∈ M
(i). Φ0 and Φ2 do not vanish identically zero at the same time for any
x-interval.
(ii). The inequality (41) is valid for all x ∈ R.
Then system (1) has no limit cycle for µ ∈ M.



In the special case q = −3 and h1(x , µ) ≡ x2 we have the result

Corollary 2
Let h0, h3 : R× R→ R be continuous functions satisfying for µ ∈ M and
x ∈ R

µxh0(x , µ)
(
1 + 3h3(x , µ)− µ2

9
x4
)
≥ 0

then the autonomous system

dx

dt
= y ,

dy

dt
= −x + µ

(
h0(x , µ) + x2y − µx3

3
y2 + h3(x , µ)y3

)
.

(42)

has no limit cycle in the phase plane for any µ.



5. Construction of systems having at most one limit cycle

In this section we consider the case n = 2

Ψ(x , y , µ) = Ψ0(x , µ) + Ψ1(x , µ)y + Ψ2(x , µ)y2, (43)

Φ(x , y , µ) =
4∑

i=0

Φi (x , µ)y i . (44)

The case n = 2 implies that the set Wµ consists of at most one oval.
To derive conditions on the functions hj we study in the following
subsections the cases Φ(x , y , µ) ≡ Φ0(x , µ),
Φ(x , y , µ) ≡ Φ0(x , µ) + Φ2(x , µ)y2,
Φ(x , y , µ) ≡ Φ0(x , µ) + Φ2(x , µ)y2 + Φ4(x , µ)y4.
In all cases we apply the algebraic approach, that is, we prescribe the
function Ψ(x , y , µ).



5.1. Existence of at most one limit cycle
if Φ does not depend on y

Concerning Ψ we assume

Ψ(x , y , µ) ≡ px2 − c + µxy + py2. (45)

Thus, under the conditions

p > 0, 4p2 − µ2 > 0, c > 0 (46)

the set Wµ consists exactly of one oval which is an ellipse.



We get

k = −2
3
. (47)

h2(x , µ) :=
3
2p
µxh3(x , µ). (48)

h1(x , µ) :=
3
8p2

(
4ph3(x , µ)(px2 − c) + h3(x , µ)µ2x2 − 2p

)
. (49)

h0(x , µ) :=
µ

16p3

(
12ph3(x , µ)x(px2 − c)− µ2h3(x , µ)x3 + 2px

)
. (50)

Φ0(x , µ) ≡ µ

16p3

(
−x4h3(x , µ)(4p2−µ2)2−x22p(1−4ch3(x , µ))(4p2−µ2)−

- 8p2c(1 + 2ch3(x , µ))
)



A detailed analysis of Φ0(x , µ) provides the result

Lemma 6
Suppose the following conditions are satisfied:
(A1). Let c and p be given positive numbers, let µ be a number of the
interval (−2p, 2p).
(A2). Let h3 : R× (−2p, 2p)→ R be a continuous function satisfying

h3(x , µ) >
1

16c
for (x , µ) ∈ R× (−2p, 2p). (51)

Then the function Φ0(x , µ) is negative (positive) definite for
(x , µ) ∈ R× (0, 2p)

(
(x , µ) ∈ R× (−2p, 0)

)
.

Additionally to the assumptions (A1) and (A2) we suppose
(A3). For j = 0, 1, 2, the functions hj : R× (−2p, 2p)→ R are defined by
(50), (49) and (48), respectively.

Theorem 7
Under the assumptions (A1)− (A3) system (1) has at most one limit
cycle in the phase plane. If system (1) has a limit cycle Γµ, then it is
hyperbolic and contains the ellipse Wµ in its interior.



5.2. Existence of at most one limit cycle
if Φ4, Φ3 and Φ1 vanish identically

Concerning the function Ψ we assume to have the form

Ψ(x , y , µ) = px2 + py2 − c , (52)

where p and c are positive numbers.
By using this approach we get

Φ2(x , µ) = µ
(4
3
h1(x , µ)p − 2h3(x , µ)(px2 − c)

)
(53)

Φ0(x , µ) = µ
(
− 2

3
(px2 − c)h1(x , µ)

)
. (54)



Putting

h1(x , µ) := px2 − c , h3(x , µ) := px2 − c +
2
3
p (55)

we obtain

Φ2(x , µ) = −2µ(px2 − c)2, Φ0(x , µ) = −2
3
µ(px2 − c)2 (56)

Therefore, the condition Φ2(x , µ)Φ0(x , µ) ≥ 0 holds and we have the
result:

Theorem 8
The autonomous system

dx

dt
= y ,

dy

dt
= −x + µ

(
(px2 − c)y + (px2 − c +

2
3
p)y3

) (57)

has for any positive numbers p and c at most one limit cycle in the whole
phase plane.



5.3. Existence of at most one limit cycles
if Φ3 and Φ1 vanish identically

In this case the function Φ(x , y , µ) has the form
Φ(x , y , µ) ≡ Φ0(x , µ) + Φ2(x , µ)y2 + Φ4(x , µ)y4. Hence, one from the
following conditions

functions Φ0(x , µ),Φ2(x , µ),Φ4(x , µ) have the same sign (58)

D := Φ2
2(x , µ)− 4Φ0(x , µ)Φ4(x , µ) ≤ 0 (59)

implies that Φ(x , y .µ) does not change sign.
As Ψ(x , y , µ) we choose the function Ψ(x , y , µ) = x2 + y2 − 1



Putting
k = −1, (60)

h0(x , µ) := h2(x , µ)(x2 − 1) (61)

we obtain

Φ4(x , µ) = −µh3(x , µ), Φ2(x , µ) = µh1(x , µ)− 3µh3(x , µ)(x2 − 1),

Φ0(x , µ) = −µh1(x , µ)(x2 − 1).

And the inequality (59) reads

µ2(h1(x , µ)− 3h3(x , µ)(x2 − 1))2 − 4µ2h3(x , µ)µh1(x , µ)(x2 − 1) ≤ 0.
(62)

Therefore, we have the result:

Theorem 9
Let h1, h2, h3 : R× R→ R be continuous functions, let the function h0
be defined by (61). Additionally we assume that the functions h1 and h3
are such that inequality (62) is valid for (x , µ) ∈ R× R or
functionsΦ0(x , µ),Φ2(x , µ),Φ4(x , µ) have the same sign. Then the
system (1) has at most one limit cycle.



To derive Φ0(x , y , µ) which has the same sign for all x ∈ R we choose

h1(x , µ) := x2 − 1. (63)

If we additionally suppose

h3(x , µ) :=
x2

3
, then (64)

Φ(x , y , µ) = −µ
(x2

3
y4 + (x2 − 1)2y2 + (x2 − 1)2

)
> 0(< 0) (65)

for µ < 0(µ > 0) and Φ(x , y , µ) vanishes only on set measure zero.

Corollary 3
Let there exist continuous function h2 : R× R→ R. Then autonomous
system

dx

dt
= y ,

dy

dt
= −x + µ

(
(x2 − 1)h2(x , µ) + (x2 − 1)y + h2(x , µ)y2 +

x2

3
y3
)
(66)

has at most one limit cycle in the whole phase plane for all µ 6= 0.



6. Conditions for the existence of a unique limit cycle

To be able to formulate the corresponding result introduce the following
condition:
(A). The functions hj : R× R→ R, 0 ≤ j ≤ 3, can be represented in the
form

hj(x , µ) = hj(x , 0) + h̃j(x , µ)µ,

where h̃j : R× R→ R are continuous.
Under this assumption, system (1) can be written in the following form

dx

dt
= y ,

dy

dt
= −x + µq(x , y) + µ2h(x , y , µ), (67)

where

q(x , y) :=
3∑

j=0

hj(x , 0)y j , h(x , y , µ) :=
3∑

j=0

h̃j(x , µ)y j .



The application of a well-known theorem [Andronov A.A. 1973,
Theorem 75] implies the result:

Theorem 10
Suppose the assumption (A) to be valid. If in polar coordinates the
equation ∫ 2π

0
q(r cosϕ, r sinϕ) sinϕ dϕ = 0 (68)

has a positive root r = r∗ satisfying∫ 2π

0

∂q(r∗ cosϕ, r∗ sinϕ)

∂y
dϕ 6= 0, (69)

then system (67) has for sufficiently small µ a unique limit cycle near the
circle centered at the origin with radius r∗ which is hyperbolic.



6.1. Existence of a unique limit cycle
in the class of systems considered in subsection 5.1

In section 5.1 we considered systems (1), where the functions h0, h1, h2
are defined by means of the function h3.
In the special case c = 1

4 , p = 1, h3(x , µ) ≡ 1 we have the result

Theorem 11
System (1) with

h3(x , µ) ≡ 1, h2(x , µ) ≡ 3
2
µx ,

h1(x , µ) ≡ 3
8

[(4 + µ2)x2 − 3], h0(x , µ) ≡ µx

16
[12x2 − 1− µ2x2]

has for sufficiently small |µ| 6= 0 a unique limit cycle Γµ which tends to
the unit circle as µ tends to zero.



6.2. Existence of a unique limit cycle
in the class of systems considered in subsection 5.2

In the same way we prove the uniqueness of limit cycle for system (57):
q(x , y) := (px2 − c)y + (px2 − c + 2

3p)y3,

∫ 2π

0

(
pr3 cos2 ϕ sinϕ− cr sinϕ+

(2
3
p − c

)
r3 sin3 ϕ+ pr5 cos2 ϕ sin3 ϕ

)
sinϕ dϕ

= rπ
(p
8
r4 +

3
4

(p − c)r2 − c
)

= 0

(70)

∫ 2π

0

(
pr2
∗ cos

2 ϕ− c + (3pr2
∗ cos

2 ϕ+ 2p − 3c)r2
∗ sin

2 ϕ
)
dϕ 6= 0. (71)



The equation (70) has the unique positive solution r∗ =
√

3(c−p)+4
√
D

p ,

where D = 9(p−c)2+8pc
16 , which fulfills the inequality (71).

Theorem 12
System (57) under the condition (46) has for sufficiently small |µ| 6= 0 a
unique limit cycle Γµ which tends to the circle with radius r∗ as µ tends
to zero.
In the special case c = 1, p = 1 we get r∗ = 2/ 4

√
2 ≈ 1.68179.



6.3. Existence of a unique limit cycle
in the class of systems considered in subsection 5.3

For system (66)
q(x , y) := (x2 − 1)h2(ϕ, µ) + (x2 − 1)y + h2(ϕ, µ)y2 + 1

2py
3, in the case

of an even in x function h2(ϕ, µ) := h2

∫ 2π

0

(
h2r

2 cos2 ϕ− h2 + r3 cos2 ϕ sinϕ− r sinϕ+ h2r
2 sin2 ϕ+

1
2
r3 sin3 ϕ

)
sinϕ dϕ

= rπ
(5
8
r2 − 1

)
= 0

(72)

∫ 2π

0

(
r2
∗ cos

2 ϕ− 1 + 2h2r∗ sinϕ+
3
2
r2
∗ sin

2 ϕ
)
dϕ 6= 0. (73)



The (72) has the unique positive solution r∗ =
√

8
5 satisfying (73).

Theorem 13
System (66) for all even in x functions h2 has for sufficiently small
|µ| 6= 0 a unique limit cycle Γµ which tends to the circle with radius r∗ as
µ tends to zero.



Conclusions and possible further development

1. Application to systems with cylindrical phase space;
2. Application to systems in the following form

dx

dt
= y + µ

l−1∑
j=0

dj(x , µ)y j ,
dy

dt
= −x + µ

l∑
j=0

hj(x , µ)y j ;

3. Application to systems where unperturbed system has nonlinear
center.



Thank you for your attention!


