On the estimation of limit cycles number for some planar autonomous system

Aliaksandr Hryn (Alexander Grin)¹

a joint work with

Klaus R. Schneider²

¹Yanka Kupala State University of Grodno

²Weierstrass Institute for Applied Analysis and Stochastics

University of Maribor April 10, 2015

Outline

- 1. Introduction and motivation
- 2. The Dulac-Cherkas (D-C) function and its main properties
- 3. General idea for the construction of D-C function for some polynomial systems
- 4. Construction of systems with no limit cycle: two approaches
- 5. Construction of systems having at most one limit cycle: algebraic approach
- 6. Conditions for the existence of a unique limit cycle
- 7. Conclusions

We consider the following class of planar autonomous differential systems depending on a real parameter μ

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -x + \mu \sum_{j=0}^{3} h_j(x,\mu) y^j.$$
(1)

We assume the functions h_j , j = 0, ..., 3, to be continuous in both variables and continuously differentiable in the first variable, moreover we suppose

$$h_3(x,\mu) \neq 0. \tag{2}$$

For $\mu = 0$, system (1) presents a linear conservative system having the first integral $x^2 + y^2 = c^2 > 0$, where *c* is any real number. If μ crosses zero, then from some circles $x^2 + y^2 = c_i^2$ limit cycles can bifurcate. *Limit cycle* represents an isolated closed trajectory of system (1).

A famous example is the van der Pol equation

$$\ddot{x} + \mu (x^2 - 1)\dot{x} + x = 0, \tag{3}$$

where a unique limit cycle bifurcates from the circle $x^2+y^2=2$ as μ crosses zero.

Concerning this bifurcation problem the question arises: How many limit cycles of system (1) can bifurcate from the continuum of circles surrounding the origin as μ crosses zero.

Here we address some inverse problem: How to construct functions $h_j, j = 0, ..., 3$, such that system (1) has not more than a given number N of limit cycles on the whole phase plane for μ belonging to some (global) interval M which M contains the value 0.

Our approach to treat this problem is based on the construction of suitable Dulac-Cherkas functions.

2. The Dulac-Cherkas (D-C) function and its main properties

We recall the definition of a Dulac function for the planar differential system

$$\frac{dx}{dt} = P(x, y), \ \frac{dy}{dt} = Q(x, y)$$
(4)

in some open region $\mathcal{G} \subset R^2$.

Definition 1

Let $P, Q \in C^1(\mathcal{G}, R)$, let X be the vector field defined by (4). A function $B \in C^1(\mathcal{G}, R)$ is called a Dulac function of (4) in \mathcal{G} if the expression

$$div(BX) \equiv \frac{\partial(BP)}{\partial x} + \frac{\partial(BQ)}{\partial y} \equiv (gradB, X) + B divX$$

does not change sign in \mathcal{G} and vanishes only on a set \mathcal{N} of measure zero. The existence of a Dulac function implies the following estimate of the , number of limit cycles of system (4) in \mathcal{G} .

Proposition 1

Let \mathcal{G} be a p-connected ($p \ge 1$) region in \mathbb{R}^2 , let $P, Q \in C^1(\mathcal{G}, \mathbb{R})$. If there is a Dulac function B of (4) in \mathcal{G} , then (4) has not more than p-1 limit cycles in \mathcal{G} .

However, the method itself provides no way for the construction of the function B and for the localization of limit cycles lying in the region G. The most applied forms of B were $x^a y^b$, $a, b \in R$ and $e^{x^a y^b}$. The method of Dulac function has been generalized in different ways. One generalization is due to L. A. Cherkas in 1997. The corresponding generalized Dulac function, which we called Dulac-Cherkas function, is defined as follows.

Definition 2

Let $P, Q \in C^1(\mathcal{G}, R)$. A function $\Psi \in C^1(\mathcal{G}, R)$ is called a Dulac-Cherkas function of system (4) in \mathcal{G} if there exists a real number $k \neq 0$ such that

$$\Phi := (grad \ \Psi, X) + k\Psi \ div \ X > 0 \quad (<0) \quad in \quad \mathcal{G}. \tag{5}$$

Lemma 1

Let $\Omega \subset D$ be connected, let Ψ be a DC function in \mathcal{G} . Then $B := |\Psi|^{1/k}$ is a Dulac function in each subregion of \mathcal{G} where Ψ is positive or negative.

The main properties of D-C function can be described with the help of the subset W of \mathcal{G} defined by

$$\mathcal{W} := \{ (x, y) \in \mathcal{G} : \Psi(x, y) = 0 \}.$$
(6)

Lemma 2 Any trajectory of system (4) meeting the curve W intersects W transversally.

Lemma 3 The curve W does not contain any equilibrium of system (4).

Lemma 4

Let W_1 and W_2 be two different smooth local open branches of the curve W such that $\overline{W_1 \cup W_2}$ is not connected, that is, $\partial W_1 \cap \partial W_2$ is empty. Then W_1 and W_2 do not meet.

Lemma 5

The curve W decomposes the region \mathcal{G} in subregions on which Ψ is definite and the transition from one subregion to an adjacent subregion is connected with a sign change of Ψ .

Theorem 1

Let Ψ be a DC function of system (4) in \mathcal{G} . Then any limit cycle of system (4) which is entirely located in \mathcal{G} does not intersect the curve W.

The following facts can be found in [Cherkas L.A., 1997] and [Grin A.A., Schneider K.R. 2007].

Theorem 2

Let Ψ be a Dulac-Cherkas function of (4) in \mathcal{G} . Then any limit cycle Γ of (4) in \mathcal{G} is hyperbolic and its stability is determined by the sign of the expression $k\Phi\Psi$ on Γ .

The sign of k plays the essential role.

Theorem 3

Let \mathcal{G} be a p-connected region, let Ψ be a D-C function of (4) for k < 0in \mathcal{G} such that \mathcal{W} has s ovals in \mathcal{G} . Then system (4) has at most p - 1 + s limit cycles in \mathcal{G} , and all limit cycles are hyperbolic.

Remark 1

Condition (5) can be relaxed by assuming that Φ may vanish in G on a set of measure zero, and that no simply closed curve (oval) of this set is a limit cycle of (4).

This approach was exploited also by

Gasull A., Giacomini H. A new criterion for controlling the number of limit cycles of some generalized Liénard equations (2002),

Gasull A., Giacomini H. Upper bounds for the number of limit cycles through linear differential equations (2006),

Gasull A., Giacomini H., Llibre J. New criteria for the existence and non-existence of limit cycles in Liénard differential systems (2008),

Gasull A., Giacomini H. Upper bounds for the number of limit cycles of some planar polynomial differential systems (2008).

and other papers.

3. General idea for the application of DC function to some classes of system (4)

For strip region $\mathcal{G} = \Omega_x = \{(x, y) : x \in [x_1, x_{N_0}], y \in R\}$ we construct the function Ψ in the form

$$\Psi(x,y) = \sum_{j=0}^{n} \Psi_j(x) y^j, \quad \Psi_j \in C^1(R),$$
(7)

for systems

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = \sum_{j=0}^{l} h_j(x)y^j, \quad h_j \in C^0(R),$$

with $l \geq 1$.

$$\Phi(x,y) \equiv \sum_{i=0}^{m} \Phi_i(x) y^i,$$
(8)

where $\Phi_i(x)$ are functions of the known coefficient functions $h_0(x), ..., h_l(x)$, of the unknown coefficient functions $\Psi_0(x), ..., \Psi_n(x)$, of their first derivatives $\Psi'_0(x), ..., \Psi'_n(x)$, and of k. The highest power m of y in (20) is $m = max\{n+1, n+l-1\}$. To determine the functions $\Psi_j(x), j = 0, ..., n$, and the real number k we reduce $\Phi(x, y)$ to the following form

$$\Phi(x,y)=\Phi_0(x),$$

satisfying relations

$$\Phi_i(x) \equiv 0 \quad \text{for} \quad i = 1, ..., m. \tag{9}$$

For l = 1 and l = 2 the relations (9) represent a system of n + 1 linear differential equations to determine the n + 1 functions $\Psi_j, j = 0, ..., n$. In case l = 1 we have Liènard system

$$\dot{x} = y, \ \dot{y} = h_0(x) + h_1(x)y,$$
 (10)

and the system (9) can be solved successively by simple quadratures, starting with Ψ_n .

$$0 \equiv \Psi'_{n}(x),$$

$$0 = \Psi'_{n-1}(x) + (k+n)h_{1}(x)\Psi_{n}(x),$$

$$0 \equiv \Psi'_{n-2}(x) + (k+n-1)h_{1}(x)\Psi_{n-1}(x) + nh_{0}(x)\Psi_{n}(x),$$

$$0 \equiv \Psi'_{1}(x) + (k+2)h_{1}(x)\Psi_{2}(x) + 3h_{0}(x)\Psi_{3}(x),$$

$$0 \equiv \Psi'_{0}(x) + (k+1)h_{1}(x)\Psi_{1}(x) + 2h_{0}(x)\Psi_{2}(x).$$
(11)

The general solution depends on n + 1 integration constants and on the constant k.

In case l = 2 the system (9) can also be integrated by solving inhomogeneous linear differential equations, starting with Ψ_n .

$$0 \equiv \Psi'_{n}(x) + (2k+n)h_{2}(x)\Psi_{n}(x),$$

$$0 \equiv \Psi'_{n-1}(x) + (2k+n-1)h_{2}(x)\Psi_{n-1}(x) + (k+n)h_{1}(x)\Psi_{n}(x),$$

$$0 \equiv \Psi'_{n-2}(x) + (2k+n-2)h_{2}(x)\Psi_{n-2}(x) + (k+n-1)h_{1}(x)\Psi_{n-1}(x) + nh_{0}(x)\Psi_{n}(x),$$

(12)

$$0 \equiv \Psi'_{1}(x) + (2k+1)h_{2}(x)\Psi_{1}(x) + (k+2)h_{1}(x)\Psi_{2}(x) + 3h_{0}(x)\Psi_{3}(x), 0 = \Psi'_{0}(x) + 2kh_{2}(x)\Psi_{0}(x) + (k+1)h_{1}(x)\Psi_{1}(x) + 2h_{0}(x)\Psi_{2}(x).$$

The functions Ψ_j depend on the parameter k, but we get no restriction on k in the process of solving this system. To fulfill the condition (5) we have to choose k and the integration constants appropriately. In case l = 3 (Kukles system) the first equation of the system (9) is an algebraic equation which determines the constant k uniquely as $k = -\frac{n}{3}$. The remaining equations represent a system of n + 1 linear differential equations. Its general solution depends on n + 1 integration constants which can be used to try to fulfill the relations (5).

$$0 \equiv (n+3k)h_{3}(x)\Psi_{n}(x),$$

$$0 \equiv \Psi_{n}'(x) + (2k+n)h_{2}(x)\Psi_{n}(x) + (n-1+3k)h_{3}(x)\Psi_{n-1}(x),$$

$$0 \equiv \Psi_{n-1}'(x) + (n-1+2k)h_{2}(x)\Psi_{n-1}(x) + (n+k)h_{1}(x)\Psi_{n}(x) + (n-2+3k)h_{3}(x)\Psi_{n-2},$$

$$0 \equiv \Psi_{n-2}'(x) + (2k+n-2)h_{2}(x)\Psi_{n-2}(x) + (k+n-1)h_{1}(x)\Psi_{n-1}(x) + nh_{0}(x)\Psi_{n}(x) + (n-3+3k)h_{3}(x)\Psi_{n-3}(x),$$

(13)

$$0 \equiv \Psi_1'(x) + (1+2k)h_2(x)\Psi_1(x) + 3kh_3(x)\Psi_0(x) + (2+k)h_1(x)\Psi_2(x) + 3h_0(x)\Psi_3(x), 0 \equiv \Psi_0'(x) + 2kh_2(x)\Psi_0(x) + (k+1)h_1(x)\Psi_1(x) + 2h_0(x)\Psi_2(x).$$

In the case of system (1) (l = 3, n = 2)

$$\begin{aligned} \Phi_4(x,\mu) &\equiv (2+3k)\mu h_3(x,\mu)\Psi_2(x,\mu), \\ \Phi_3(x,\mu) &\equiv \Psi_2'(x,\mu) \\ &+ (2k+2)\mu h_2(x,\mu)\Psi_2(x,\mu) + (1+3k)\mu h_3(x,\mu)\Psi_1(x,\mu), \\ \Phi_2(x,\mu) &\equiv \Psi_1'(x,\mu) + (1+2k)\mu h_2(x,\mu)\Psi_1(x,\mu) \\ &+ (2+k)\mu h_1(x,\mu)\Psi_2(x,\mu) + 3k\mu h_3(x,\mu)\Psi_0(x,\mu), \\ \Phi_1(x,\mu) &\equiv \Psi_0'(x,\mu) + 2k\mu h_2(x,\mu)\Psi_0(x,\mu) \\ &+ (k+1)\mu h_1(x,\mu)\Psi_1(x,\mu) + 2\mu h_0(x,\mu)\Psi_2(x,\mu) - 2x\Psi_2(x,\mu). \end{aligned}$$
(14)

In all cases of I and n

$$\Phi_0(x,\mu) \equiv -\Psi_1(x,\mu)x + \mu \Big(k \Psi_0(x,\mu) h_1(x,\mu) + \Psi_1(x,\mu) h_0(x,\mu) \Big).$$
(15)

For such purpose we can apply the reduction to the linear programming problem

$$L \rightarrow \max, \sum_{i=0}^{n} C_i \tilde{\Phi}_i(x_i) - L \ge 0, |C| \le 1,$$
 (16)

 $x_l \in [x_1, x_{N_0}], i = \overline{1, N_0}$. If this is not possible we can reduce function $\Phi(x, y)$ to one of the following forms

$$\Phi(x, y) = \Phi_0(x) + \Phi_1(x)y + \Phi_2(x)y^2,$$

$$\Phi(x, y) = \Phi_0(x) + \Phi_2(x)y^2 + \Phi_4(x)y^4$$

The paper **[Cherkas L.A., Grin A., 2010]** contains two algorithms to construct $\Phi(x, y) > 0$: for odd y^p all $\Phi_p(x) = 0$, for even y^p all $\Phi_p(x) \ge 0$ and $\Phi_0(x) > 0$.

Or we have to look for corresponding conditions on the functions h_i .

For the system

$$\dot{x} = yP_0(x), \ \dot{y} = h_0(x) + h_1(x)y + h_2(x)y^2 + h_3y^3,$$
 (17)

with $P_0(x) \in C^1$, to fulfil $\Phi(x, y) > 0$ we require $|\Phi_w(x)| < \varepsilon$ for odd y^w , ε sufficiently small and $\Phi_v(x) \ge 0$ for even y^v and $\Phi_0(x) > 0$. In this case we take all $\Psi_i(x)$ in the form $\Psi_i(x) = \sum_{j=0}^{m_i} C_{ij} x^j$, $C_{ij} \in \mathbb{R}$, $m_i \in N$ and solve the linear programming problem

$$L \rightarrow max, \ \sum_{j=0}^{m} C_{j} \Phi_{vj}(x_{l}) - L > 0, \ |\sum_{j=0}^{m} C_{j} \Phi_{wj}(x_{l})| - \varepsilon < 0,$$

the vector C_j consists of coefficients C_{ij} from all $\Psi_i(x)$ and has dimension $m = m_1 + \ldots + m_n + n$.

Example 1

For system (17) with $P_0(x) = 1 + x^2/6$, $h_0(x) = -x(1 + x^2)$, $h_1(x) = 1 - x^2$, $h_2(x) = (x - 1)/100$, $h_3 = -1$ function Ψ is constructed by using k = -1, n = 2, $m_1 = 6$, $m_2 = 7$, $m_3 = 8$, $\varepsilon = 0.0000001$, $N_0 = 100$, [-1.5; 1.5]. For the solution (C^*, L^*) the equation $\Psi = 0$ defines unique oval and polynomial $\Phi(x, y) > 0$ on the whole plane. It ∇ allows to prove the uniqueness of limit cycle globally. In case $l \ge 4$ system (9) consist of n + 1 linear differential equations and l - 2 algebraic equations to determine k and the functions $\Psi_0, ..., \Psi_n$. Thus, this system has generically no solution.

In [Cherkas L.A., Grin A., Schneider K.R. 2011] it was shown that under additional conditions on the functions h_i system (9) has a nontrivial solution which satisfies the inequalities (5).

In **[X. loakim 2014]** it is proved the uniqueness of the limit cycle on the whole phase plane for generalized Van der Pol system

$$\dot{x} = y, \quad \dot{y} = -x + \varepsilon y^{2m+1} (1 - x^{2q}),$$

where ε is a small parameter tending to zero, m and $q \in N$. To prove this result for global interval of ε we constructed $\Psi = x^2 + y^2 - 1$. The corresponding function $\Phi = 2\varepsilon y^{2m}(x^2 - 1)^2(1 + x^2 + x^4 + ... + x^{2q-2})$. In the same manner for the system

$$\dot{x} = y^{2m-1}, \quad \dot{y} = -x^{2q-1} + \varepsilon y^{2m+1}(1 - x^{2q}),$$

where unperturbed system has the Hamiltonian $x^{2q}/2q + y^{2m}/2m = c$ we constructed $\Psi = m/q(x^{2q} + q/py^{2m} - 1)$. The corresponding function $\Phi = y^{2m} \varepsilon 2m^2 c_2/q(x^{2q} - 1)^2$. For the sequel we suppose ${\cal G}$ to be a simply connected region containing the origin and assume that the Dulac-Cherkas function Ψ is a polynomial in y

$$\Psi(x,y,\mu) = \sum_{j=0}^{n} \Psi_j(x,\mu) y^j$$
(18)

with

$$\Psi_n(x,\mu) \neq 0. \tag{19}$$

Then, the corresponding function Φ is in case of system (1)

$$\Phi(x, y, \mu) = \sum_{i=0}^{m} \Phi_i(x, \mu) y^i, \quad m = n+2.$$
(20)

We consider the cases n = 1 and n = 2. Thus, system (1) has no limit cycle in case n = 1 and at most one limit cycle in case n = 2 in G.

4. Construction of systems with no limit cycle

In the case n = 1 we have the representations

$$\Psi(x, y, \mu) = \Psi_0(x, \mu) + \Psi_1(x, \mu)y$$
(21)

with

$$\Psi_1(x,\mu) \neq 0. \tag{22}$$

$$\Phi(x, y, \mu) = \sum_{i=0}^{3} \Phi_i(x, \mu) y^i.$$
 (23)

where

$$\Phi_0(x,\mu) \equiv -\Psi_1(x,\mu)x + \mu \Big(k \Psi_0(x,\mu) h_1(x,\mu) + \Psi_1(x,\mu) h_0(x,\mu) \Big).$$
(24)

The relation for the function Φ_0 is valid for any *n*. To derive conditions on the coefficient functions h_j such that one of the inequalities in (5) is fulfilled we study the following cases $\Phi(x, y, \mu) \equiv \Phi_0(x, \mu)$ and $\Phi(x, y, \mu) \equiv \Phi_0(x, \mu) + \Phi_2(x, \mu)y^2$. If we set

$$\Psi_0(x,\mu) := q \neq 0, \quad \Psi_1(x,\mu) := \mu x$$
 (25)

we derive conditions on k and the functions h_i .

$$k = -\frac{1}{3}.$$
 (26)

$$h_3(x,\mu) := \frac{3q + \mu^2 x^2 h_1(x,\mu)}{3q^2}.$$
 (27)

$$h_2(x,\mu) := \frac{\mu x h_1(x,\mu)}{q}.$$
 (28)

Taking into account

$$\Phi(x, y, \mu) \equiv \Phi_0(x, \mu) \equiv -\mu \left(x^2 + \frac{q}{3} h_1(x, \mu) - \mu x h_0(x, \mu) \right).$$
(29)

and that system (1) has no limit cycle for $\mu = 0$, we have the result:

Theorem 4

Let q be any given real number different from zero, let $h_0, h_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous functions, let h_2 and h_3 be defined by (28) and (27), respectively. If there exists an interval M such that for $\mu \in M$ the expression

$$-x^2-\frac{q}{3}h_1(x,\mu)+\mu xh_0(x,\mu)$$

has the same sign for all $x \in \mathbb{R}$ and does not vanish identically for any x-interval, then system (1) has no limit cycle for $\mu \in M$.

As an example we consider the case

$$q = -3, \quad h_1(x,\mu) \equiv x^2$$
 (30)

and obtain $\Phi(x, y, \mu) \equiv \mu^2 x h_0(x, \mu)$ and $\Psi(x, \mu) \equiv q + \mu x y$. Thus, we have:

Corollary 1

The autonomous system

$$\begin{aligned} \frac{dx}{dt} &= y, \\ \frac{dy}{dt} &= -x + \mu \Big(h_0(x,\mu) + x^2 y - \frac{\mu}{3} x^3 y^2 + \frac{-9 + \mu^2 x^4}{27} y^3 \Big) \end{aligned}$$

has no limit cycle for any μ provided that for any $\mu \neq 0$ the function $xh_0(x,\mu)$ does not change sign for $x \in \mathbb{R}$ and does vanish identically for any x-interval.

The way we used to derive conditions for system (1) to have no limit cycle can be characterized as an algebraic method: we prescribe Ψ_0 and Ψ_1 and determine conditions for the coefficient functions h_j , $0 \le j \le 3$, by solving the identities for $\Phi_3(x,\mu)$, $\Phi_2(x,\mu)$, $\Phi_1(x,\mu)$ in (9) and the inequality $\Phi_0(x,\mu) > 0 (< 0)$

Now we describe another so called algebraic-differential approach based on a combination of the approach used above and the method used in [Cherkas L.A., Grin A.A., Shcneider K.R. 2011]. As in the preceding approach we first determine the number k in order to satisfy the identity $\Phi_3(x,\mu) \equiv 0$. Then we solve the identities $\Phi_2(x,\mu) \equiv 0$ and $\Phi_1(x,\mu) \equiv 0$ as a system of non-homogeneous linear differential equations for Ψ_0 and Ψ_1 . In general it is not possible to get an explicit solution of this system. Under the assumption that we are able to obtain a solution of that system as a function of the coefficient functions h_i , we can plug in this solution into the inequality (5). By this way we derive conditions on the coefficient functions h_i implying that Ψ is a Dulac-Cherkas function.

As an example we consider system (1) under the condition

$$h_2(x,\mu) \equiv 0. \tag{31}$$

From the first identity in (9) we get k=-1/3, the identities for Φ_2 and Φ_1 read

$$\Phi_{2}(x,\mu) \equiv \Psi_{1}'(x,\mu) - \mu h_{3}(x,\mu)\Psi_{0}(x,\mu) \equiv 0,$$

$$\Phi_{1}(x,\mu) \equiv \Psi_{0}'(x,\mu) + \frac{2}{3}\mu h_{1}(x,\mu)\Psi_{1}(x,\mu) \equiv 0.$$
(32)

We consider (32) as a system of linear homogeneous differential equations to determine Ψ_0 and Ψ_1 . If we look for a solution of system (32) satisfying

$$\Psi_1(x,\mu) \equiv \kappa \Psi_0(x,\mu), \tag{33}$$

where κ is some constant which can depend on the parameter $\mu,$ we obtain the condition

$$h_3(x,\mu) \equiv -\frac{2}{3}\kappa^2 h_1(x,\mu).$$
 (34)

Therefore, we get from the last differential equation in (32) the special solution

$$\Psi_0(x,\mu) \equiv \exp\left(-\frac{2}{3}\mu\kappa\int^x h_1(\xi,\mu)d\xi\right).$$
(35)

Finally, we obtain

$$\Phi_0(x,\mu) = -\frac{\mu^2}{3} \exp\left(\frac{\mu^2}{9}x^2\right) h_0(x,\mu), \quad \Psi(x,y,\mu) = \exp\left(\frac{\mu^2}{9}x^2\right) \left(1 - \frac{\mu}{3}y\right).$$

Thus, we have the result:

Theorem 5

Let $h_0 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous function and for any μ does not change sign and does not vanish identically in x on any x-interval, then the autonomous system

$$\frac{dx}{dt} = y,$$

$$\frac{dy}{dt} = -x + \mu \Big(h_0(x,\mu) + xy - \frac{2}{27}\mu^2 xy^3 \Big),$$
(36)

has no limit cycle in the phase plane for any μ .

4.2. Nonexistence of limit cycles if Φ_3 and Φ_1 vanish identically

In what follows we have

$$\Phi(x, y, \mu) = \Phi_0(x, \mu) + \Phi_2(x, \mu)y^2.$$
(37)

As in the subsection before, we suppose $\Psi(x, y, \mu) \equiv q + \mu x y$. Solving the identities $\Phi_3 \equiv 0$ and $\Phi_1 \equiv 0$ we get

$$\Phi_2(x,\mu) \equiv \mu \Big(1 - qh_3(x,\mu) + \frac{\mu^2}{3q} x^2 h_1(x,\mu) \Big), \tag{38}$$

$$\Phi_0(x,\mu) \equiv \mu \Big(-x^2 - \frac{q}{3}h_1(x,\mu) + \mu x h_0(x,\mu) \Big).$$
(39)

The relation

$$\Phi_2(x,\mu)\Phi_0(x,\mu) \ge 0,$$
 (40)

is a sufficient condition for Φ to have the same sign. Using (38) and (39) it reads

$$\mu^{2}\Big(-x^{2}-\frac{q}{3}h_{1}(x,\mu)+\mu xh_{0}(x,\mu)\Big)\times\Big(1-qh_{3}(x,\mu)+\frac{\mu^{2}}{3q}x^{2}h_{1}(x,\mu)\Big)\geq0.$$
(41)

Theorem 6

Let q be any given real number different from zero, let

 $h_0, h_1, h_3 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous functions, let the function h_2 be defined by (28). Suppose the existence of an interval M such that for $\mu \in M$

(i). Φ_0 and Φ_2 do not vanish identically zero at the same time for any x-interval.

(ii). The inequality (41) is valid for all $x \in \mathbb{R}$. Then system (1) has no limit cycle for $\mu \in M$. In the special case q = -3 and $h_1(x, \mu) \equiv x^2$ we have the result

Corollary 2

Let $h_0, h_3 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous functions satisfying for $\mu \in M$ and $x \in \mathbb{R}$

$$\mu x h_0(x,\mu) \Big(1 + 3h_3(x,\mu) - \frac{\mu^2}{9} x^4 \Big) \ge 0$$

then the autonomous system

$$\frac{dx}{dt} = y,$$
(42)
$$\frac{dy}{dt} = -x + \mu \Big(h_0(x,\mu) + x^2 y - \frac{\mu x^3}{3} y^2 + h_3(x,\mu) y^3 \Big).$$

has no limit cycle in the phase plane for any μ .

In this section we consider the case n = 2

$$\Psi(x, y, \mu) = \Psi_0(x, \mu) + \Psi_1(x, \mu)y + \Psi_2(x, \mu)y^2,$$
(43)

$$\Phi(x, y, \mu) = \sum_{i=0}^{4} \Phi_i(x, \mu) y^i.$$
 (44)

The case n = 2 implies that the set \mathcal{W}_{μ} consists of at most one oval. To derive conditions on the functions h_j we study in the following subsections the cases $\Phi(x, y, \mu) \equiv \Phi_0(x, \mu)$, $\Phi(x, y, \mu) \equiv \Phi_0(x, \mu) + \Phi_2(x, \mu)y^2$, $\Phi(x, y, \mu) \equiv \Phi_0(x, \mu) + \Phi_2(x, \mu)y^2 + \Phi_4(x, \mu)y^4$. In all cases we apply the algebraic approach, that is, we prescribe the function $\Psi(x, y, \mu)$.

5.1. Existence of at most one limit cycle if Φ does not depend on y

Concerning Ψ we assume

$$\Psi(x, y, \mu) \equiv px^2 - c + \mu xy + py^2.$$
(45)

Thus, under the conditions

$$p > 0, \quad 4p^2 - \mu^2 > 0, \quad c > 0$$
 (46)

the set \mathcal{W}_{μ} consists exactly of one oval which is an ellipse.

We get

$$k = -\frac{2}{3}.\tag{47}$$

$$h_2(x,\mu) := \frac{3}{2p} \mu x h_3(x,\mu).$$
(48)

$$h_1(x,\mu) := \frac{3}{8p^2} \Big(4ph_3(x,\mu)(px^2-c) + h_3(x,\mu)\mu^2x^2 - 2p \Big).$$
(49)

$$h_0(x,\mu) := \frac{\mu}{16p^3} \Big(12ph_3(x,\mu)x(px^2-c) - \mu^2h_3(x,\mu)x^3 + 2px \Big).$$
 (50)

$$\Phi_0(x,\mu) \equiv \frac{\mu}{16p^3} \Big(-x^4 h_3(x,\mu) (4p^2 - \mu^2)^2 - x^2 2p (1 - 4ch_3(x,\mu)) (4p^2 - \mu^2) - x^2 p (1 -$$

$$-8p^2c(1+2ch_3(x,\mu)))$$

A detailed analysis of $\Phi_0(x,\mu)$ provides the result

Lemma 6

Suppose the following conditions are satisfied:

(A₁). Let c and p be given positive numbers, let μ be a number of the interval (-2p, 2p).

(A₂). Let $h_3 : \mathbb{R} \times (-2p, 2p) \to \mathbb{R}$ be a continuous function satisfying

$$h_3(x,\mu) > rac{1}{16c}$$
 for $(x,\mu) \in \mathbb{R} \times (-2\rho, 2\rho).$ (51)

Then the function $\Phi_0(x,\mu)$ is negative (positive) definite for $(x,\mu) \in \mathbb{R} \times (0,2p) ((x,\mu) \in \mathbb{R} \times (-2p,0)).$

Additionally to the assumptions (A_1) and (A_2) we suppose (A_3) . For j = 0, 1, 2, the functions $h_j : \mathbb{R} \times (-2p, 2p) \to \mathbb{R}$ are defined by (50), (49) and (48), respectively.

Theorem 7

Under the assumptions $(A_1) - (A_3)$ system (1) has at most one limit cycle in the phase plane. If system (1) has a limit cycle Γ_{μ} , then it is hyperbolic and contains the ellipse W_{μ} in its interior.

5.2. Existence of at most one limit cycle if Φ_4 , Φ_3 and Φ_1 vanish identically

Concerning the function $\boldsymbol{\Psi}$ we assume to have the form

$$\Psi(x, y, \mu) = px^{2} + py^{2} - c, \qquad (52)$$

where p and c are positive numbers. By using this approach we get

$$\Phi_2(x,\mu) = \mu \left(\frac{4}{3}h_1(x,\mu)p - 2h_3(x,\mu)(px^2 - c)\right)$$
(53)

$$\Phi_0(x,\mu) = \mu \Big(-\frac{2}{3} (px^2 - c) h_1(x,\mu) \Big).$$
(54)

Putting

$$h_1(x,\mu) := px^2 - c, \quad h_3(x,\mu) := px^2 - c + \frac{2}{3}p$$
 (55)

we obtain

$$\Phi_2(x,\mu) = -2\mu(px^2-c)^2, \quad \Phi_0(x,\mu) = -\frac{2}{3}\mu(px^2-c)^2$$
 (56)

Therefore, the condition $\Phi_2(x,\mu)\Phi_0(x,\mu) \ge 0$ holds and we have the result:

Theorem 8

The autonomous system

$$\frac{dx}{dt} = y,
\frac{dy}{dt} = -x + \mu \left((px^2 - c)y + (px^2 - c + \frac{2}{3}p)y^3 \right)$$
(57)

has for any positive numbers p and c at most one limit cycle in the whole phase plane.

5.3. Existence of at most one limit cycles if Φ_3 and Φ_1 vanish identically

In this case the function $\Phi(x, y, \mu)$ has the form $\Phi(x, y, \mu) \equiv \Phi_0(x, \mu) + \Phi_2(x, \mu)y^2 + \Phi_4(x, \mu)y^4$. Hence, one from the following conditions

functions $\Phi_0(x,\mu), \Phi_2(x,\mu), \Phi_4(x,\mu)$ have the same sign (58)

$$D := \Phi_2^2(x,\mu) - 4\Phi_0(x,\mu)\Phi_4(x,\mu) \le 0$$
(59)

implies that $\Phi(x, y, \mu)$ does not change sign. As $\Psi(x, y, \mu)$ we choose the function $\Psi(x, y, \mu) = x^2 + y^2 - 1$

Putting

$$k = -1, \tag{60}$$

$$h_0(x,\mu) := h_2(x,\mu)(x^2 - 1)$$
(61)

we obtain

$$\begin{split} \Phi_4(x,\mu) &= -\mu h_3(x,\mu), \quad \Phi_2(x,\mu) = \mu h_1(x,\mu) - 3\mu h_3(x,\mu)(x^2-1), \\ \Phi_0(x,\mu) &= -\mu h_1(x,\mu)(x^2-1). \end{split}$$

And the inequality (59) reads

$$\mu^{2}(h_{1}(x,\mu)-3h_{3}(x,\mu)(x^{2}-1))^{2}-4\mu^{2}h_{3}(x,\mu)\mu h_{1}(x,\mu)(x^{2}-1) \leq 0.$$
(62)

Therefore, we have the result:

Theorem 9

Let $h_1, h_2, h_3 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous functions, let the function h_0 be defined by (61). Additionally we assume that the functions h_1 and h_3 are such that inequality (62) is valid for $(x, \mu) \in \mathbb{R} \times \mathbb{R}$ or functions $\Phi_0(x, \mu), \Phi_2(x, \mu), \Phi_4(x, \mu)$ have the same sign. Then the system (1) has at most one limit cycle.

To derive $\Phi_0(x, y, \mu)$ which has the same sign for all $x \in \mathbb{R}$ we choose

$$h_1(x,\mu) := x^2 - 1.$$
 (63)

If we additionally suppose

$$h_3(x,\mu) := \frac{x^2}{3}, then$$
 (64)

$$\Phi(x, y, \mu) = -\mu \left(\frac{x^2}{3}y^4 + (x^2 - 1)^2y^2 + (x^2 - 1)^2\right) > 0 (<0)$$
 (65)

for $\mu < 0(\mu > 0)$ and $\Phi(x, y, \mu)$ vanishes only on set measure zero. Corollary 3

Let there exist continuous function $h_2:\mathbb{R}\times\mathbb{R}\to\mathbb{R}.$ Then autonomous system

$$\frac{dx}{dt} = y,$$

$$\frac{dy}{dt} = -x + \mu \left((x^2 - 1)h_2(x, \mu) + (x^2 - 1)y + h_2(x, \mu)y^2 + \frac{x^2}{3}y^3 \right)$$
(66)

has at most one limit cycle in the whole phase plane for all $\mu \neq 0$.

To be able to formulate the corresponding result introduce the following condition:

(A). The functions $h_j : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $0 \le j \le 3$, can be represented in the form

$$h_j(x,\mu) = h_j(x,0) + \tilde{h}_j(x,\mu)\mu,$$

where $\tilde{h}_j : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuous.

Under this assumption, system (1) can be written in the following form

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -x + \mu q(x, y) + \mu^2 h(x, y, \mu), \tag{67}$$

where

$$q(x,y) := \sum_{j=0}^{3} h_j(x,0)y^j, \quad h(x,y,\mu) := \sum_{j=0}^{3} \tilde{h}_j(x,\mu)y^j.$$

The application of a well-known theorem [Andronov A.A. 1973, Theorem 75] implies the result:

Theorem 10

Suppose the assumption (A) to be valid. If in polar coordinates the equation

$$\int_{0}^{2\pi} q(r\cos\varphi, r\sin\varphi)\sin\varphi \,d\varphi = 0 \tag{68}$$

has a positive root $r = r_*$ satisfying

$$\int_{0}^{2\pi} \frac{\partial q(r_* \cos \varphi, r_* \sin \varphi)}{\partial y} \, d\varphi \neq 0, \tag{69}$$

then system (67) has for sufficiently small μ a unique limit cycle near the circle centered at the origin with radius r_* which is hyperbolic.

6.1. Existence of a unique limit cycle in the class of systems considered in subsection 5.1

In section 5.1 we considered systems (1), where the functions h_0 , h_1 , h_2 are defined by means of the function h_3 . In the special case $c = \frac{1}{4}$, p = 1, $h_3(x, \mu) \equiv 1$ we have the result Theorem 11

System (1) with

$$h_3(x,\mu)\equiv 1,\quad h_2(x,\mu)\equiv \frac{3}{2}\mu x,$$

$$h_1(x,\mu) \equiv \frac{3}{8}[(4+\mu^2)x^2-3], \quad h_0(x,\mu) \equiv \frac{\mu x}{16}[12x^2-1-\mu^2 x^2]$$

has for sufficiently small $|\mu| \neq 0$ a unique limit cycle Γ_{μ} which tends to the unit circle as μ tends to zero.

6.2. Existence of a unique limit cycle in the class of systems considered in subsection 5.2

In the same way we prove the uniqueness of limit cycle for system (57): $q(x, y) := (px^2 - c)y + (px^2 - c + \frac{2}{3}p)y^3$,

$$\int_{0}^{2\pi} \left(pr^{3} \cos^{2} \varphi \sin \varphi - cr \sin \varphi + \left(\frac{2}{3}p - c\right)r^{3} \sin^{3} \varphi + pr^{5} \cos^{2} \varphi \sin^{3} \varphi \right) \sin \varphi c$$
$$= r\pi \left(\frac{p}{8}r^{4} + \frac{3}{4}(p - c)r^{2} - c\right) = 0$$
(70)

$$\int_{0}^{2\pi} \left(pr_{*}^{2} \cos^{2} \varphi - c + (3pr_{*}^{2} \cos^{2} \varphi + 2p - 3c)r_{*}^{2} \sin^{2} \varphi \right) d\varphi \neq 0.$$
 (71)

The equation (70) has the unique positive solution $r_* = \sqrt{\frac{3(c-p)+4\sqrt{D}}{p}}$, where $D = \frac{9(p-c)^2+8pc}{16}$, which fulfills the inequality (71).

Theorem 12

System (57) under the condition (46) has for sufficiently small $|\mu| \neq 0$ a unique limit cycle Γ_{μ} which tends to the circle with radius r_* as μ tends to zero.

In the special case c = 1, p = 1 we get $r_* = 2/\sqrt[4]{2} \approx 1.68179$.

6.3. Existence of a unique limit cycle in the class of systems considered in subsection 5.3

For system (66) $q(x,y) := (x^2 - 1)h_2(\varphi, \mu) + (x^2 - 1)y + h_2(\varphi, \mu)y^2 + \frac{1}{2}py^3$, in the case of an even in x function $h_2(\varphi, \mu) := h_2$

$$\int_{0}^{2\pi} \left(h_2 r^2 \cos^2 \varphi - h_2 + r^3 \cos^2 \varphi \sin \varphi - r \sin \varphi + h_2 r^2 \sin^2 \varphi + \frac{1}{2} r^3 \sin^3 \varphi \right) \sin \varphi = r\pi \left(\frac{5}{8} r^2 - 1 \right) = 0$$
(72)

$$\int_{0}^{2\pi} \left(r_{*}^{2} \cos^{2} \varphi - 1 + 2h_{2}r_{*} \sin \varphi + \frac{3}{2}r_{*}^{2} \sin^{2} \varphi \right) d\varphi \neq 0.$$
 (73)

The (72) has the unique positive solution $r_* = \sqrt{\frac{8}{5}}$ satisfying (73).

Theorem 13

System (66) for all even in x functions h_2 has for sufficiently small $|\mu| \neq 0$ a unique limit cycle Γ_{μ} which tends to the circle with radius r_* as μ tends to zero.

Conclusions and possible further development

- 1. Application to systems with cylindrical phase space;
- 2. Application to systems in the following form

$$rac{dx}{dt}=y+\mu\sum_{j=0}^{l-1}d_j(x,\mu)y^j,\quad rac{dy}{dt}=-x+\mu\sum_{j=0}^lh_j(x,\mu)y^j;$$

3. Application to systems where unperturbed system has nonlinear center.

Thank you for your attention!

