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The problem

It is well known that

dx

dt
= ẋ = P(x , y),

dy

dt
= ẏ = Q(x , y), (x , y) ∈ R2, t ∈ R,

with P and Q polynomials can also be written as

dz

dt
= ż = F (z , z̄), z ∈ C, t ∈ R,

where F is a complex polynomial.
We consider systems with F having few monomials and study the
number of limit cycles of them.
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The problem-II

Clearly, equations with one monomial

ż = Azu z̄v

have NO limit cycles because they are homogeneous.
We are now studying equations with two monomials,

ż = Azu z̄v + Bzk z̄ l ,

where A,B ∈ C and u, v , k , l ∈ N ∪ {0}, trying to give a uniform
bound for their number of limit cycles.
For instance, consider

ż = (1 + i) z − z2z̄ .

This equation with two monomials has the circle |z | = 1 as limit
cycle, because, in polar coordinates, writes as ṙ = r(1− r2), θ̇ = 1.
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First result

The aim of this talk is to present our results on equations with
three monomials,

ż = Azu z̄v + Bzk z̄ l + Czmz̄n,

where A,B,C ∈ C and u, v , k , l ,m, n ∈ N ∪ {0}.

Theorem

For any p ∈ N there is a differential equation of type

ż = Az + Bzk z̄ l + Czmz̄n,

where A,B,C ∈ C and k, l ,m, n ∈ N∪ {0}, having at least p limit
cycles.
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Second result

Having previous result on mind it has sense to study the number of
limit cycles for some fixed values k , l ,m, n. we prove:

Theorem

Consider equation

ż = A z + B z̄ + C zmz̄n. (1)

Then for m = 0 it has no limit cycles. For m ≥ 2, Re(A) 6= 0 and

|B| ≤ (m − 1)|Re(A)|
m

, (2)

it has at most one limit cycle. Moreover if the limit cycle exists it
is hyperbolic and stable (resp. unstable) if sgn(Re(A)) > 0 (resp.
< 0) and it must surround the origin.
Moreover, when (2) does not hold there are equations of type (1)
having more than one limit cycle
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The results of this talk are going to appear in:

A. Gasull, C. Li & J. Torregrosa. “Limit cycles for 3-monomial
differential equations”. To appear in JMAA (2015).
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A well-known example with 3 monomials

A celebrated family of differential equations with 3 monomials is

ż = Az + Bz2z̄ + C z̄q−1,

with q ≥ 3. It gives the versal deformation of a principal singular
smooth systems having rotational invariance of 2π/q radians. The
cases q = 3, 4 are called strong resonances while the cases q ≥ 5
are called weak resonances. The situation q 6= 4 is well
understood, see for instance:

Arnold, V., “Chapitres supplémentaires de la théorie des
équations différentielles ordinaires”, Ed. Mir-Moscou, 1980.

Chow, S. N.; Li, C.; Wang, D., A simple proof of the
uniqueness of periodic orbits in the 1:3 resonance problem.
Proc. Amer. Math. Soc. 105 (1989) 1025–1032.

Horozov, E., Versal deformations of equivariant vector fields
for the case of symmetries of order 2 and 3. Trudy Sem. Pet.,
5 (1979) 163–192 (in russian).
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A well-known example with 3 monomials-II

The study of the limit cycles for case q = 4 turns out to be more
difficult. To know the number of limit cycles surrounding the
origin, and eventually surrounding also the other 4 or 8 critical
point that the equation can posses is yet an open question. It is
known that at least two limit cycles can exist surrounding the 9
critical points.
The problem of the number of limit cycles not surrounding the
origin is solved by Zegeling. There are either NO limit cycles or
exactly 4 hyperbolic ones, each one of them surrounding exactly
one of the critical points of index +1.
Inspired by the presence of the four limit cycles not surrounding
the origin for

ż = Az + Bz2z̄ + C z̄q−1,

and q = 4, we will consider a variation of the above system that
will allow us to prove that there are equations with 3 monomials
with an arbitrary large number of limit cycles non surrounding the
origin.
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Some more references

Álvarez, M. J.; Gasull, A.; Prohens R., Limit cycles
for cubic systems with a symmetry of order 4 and without
infinite critical points. Proc. Amer. Math. Soc., 136 (2008)
1035–1043.

Guckenheimer, J., Phase portraits of planar vector fields:
computer proofs. Exp. Mathematics, 4 (1995) 153–165.

Krauskopf, B., Bifurcation sequences at 1:4 resonance: an
inventory. Nonlinearity, 7 (1994) 1073–1091.

Yu, P.; Han, M.; Yuan, Y., Analysis on limit cycles of
Zq-equivariant polynomial vector fields with degree 3 or 4. J.
Math. Anal. Appl., 322 (2006) 51–65.

Zegeling, A., Equivariant unfoldings in the case of
symmetry of order 4. Serdica, 19 (1993) 71–79.
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Starting equation for proving our first theorem

Lemma

Consider the polynomial differential equation

ż = F (z , z̄) + Czmz̄n,

where 0 6= C ∈ C and deg(F ) < m + n. Then, the sum of the
indices of all its critical points is m − n.

The condition on differential equation

ż = Az + Bz2z̄ + C z̄q−1, (3)

to be Hamiltonian is Re(A) = Re(B) = 0. By the Lemma, for
q ≥ 5 the total sum of the indices of all its critical points in this
case is 1− q < 0. Moreover, it can be seen that it has only one
critical point of index +1. Therefore, for q ≥ 5, the Hamiltonian
systems in (3) are not good candidates to start our study.
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Starting equation for proving our first theorem-II

Instead of considering differential equation of the form

ż = Az + Bz2z̄ + C z̄q−1,

we take the following subclass of equations with 3 monomials,

ż = A z +B zp−1z̄p−2+C z̄p−1 = A z +B z |z |2(p−2)+C z̄p−1, (4)

with p ≥ 3, which also have rotational invariance of 2π/p radians.
Notice that both coincide when p = q = 3.
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Starting equation for proving our first theorem-III

Equation

ż = (a + i) z + (b + i) zp−1z̄p−2 − 5i

2
z̄p−1,

when a = b = 0 is Hamiltonian, with Hamiltonian function

H(r , θ) =
r2

2
− 5

2p
rp cos(p θ) +

r2(p−1)

2(p − 1)
− ρ̃,

where ρ̃ = (p−2)(p−5)
2p(p−1) 2

2
p−2 .
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Starting equation for proving our first theorem-IV

Their phase portraits are:

Centers when a = b = 0 for the cases p = 3 and p = 6.
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Proof of the first theorem

Our first theorem is a corollary of the following proposition:

Proposition

For 3 ≤ p ∈ N, consider the 2-parameter family of systems

ż = (a + i) z + (b + i) z |z |2(p−2) − 5i

2
z̄p−1,

with a, b ∈ R, 3 ≤ p ∈ N. Then there exist values for a and b for
which the above equation has at least p limit cycles.
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Proof of the proposition

The differential equation in polar coordinates is

dH(r , θ)− (a r2 + b r2(p−1)) dθ = 0.

Writing a = ε α and b = ε β, for α, β ∈ R and ε small enough, the
associated first order Melnikov function is

M(ρ) = α I2(ρ) + β I2(p−1)(ρ),

where

Ij(ρ) =

∫
H=ρ

r j dθ = 2

∫ θ∗(ρ)

0

(
r j2(θ, ρ)− r j1(θ, ρ)

)
dθ,

for j = 2, 2(p − 1) and ρ ∈ (ρ∗, 0).

r1(θ, ρ)
r2(θ, ρ)

θ = θ∗(ρ)

H(r , θ) = ρ

θ
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Proof of the proposition-II

Then, we introduce the auxiliary analytic function

J(ρ) =
I2(p−1)(ρ)

I2(ρ)
, ρ ∈ (ρ∗, 0)

and we write
M(ρ) = I2(ρ)

(
α + βJ(ρ)

)
.

Notice that I2(ρ) > 0 because this function gives the double of the
area surrounded by a connected component of the curve
H(r , θ) = ρ.
We claim that J(ρ) is not constant. Let us prove first that if the
claim holds then the proposition is already proved.
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Proof of the proposition-III

Recall that
M(ρ) = I2(ρ)

(
α + βJ(ρ)

)
.

If J is not a constant, take ρ̂ ∈ (ρ∗, 0). Then choosing α = −J(ρ̂)
and β = 1 we have that M(ρ̂) = 0. Since J is not a constant and
the function is analytic, this zero of M has a given finite
multiplicity. If this zero is simple we are done.
If not, by using again that I2(ρ) > 0 it is easy to see that taking ν
small enough, and with the suitable sign, the function

M(ρ) = (ν − J(ρ̂)) I2(ρ) + I2p−2(ρ)

has a simple zero ρ̂ν , near ρ = ρ̂, as we wanted to prove.

Armengol Gasull (UAB) Limit cycles for 3-monomial differential equations



Proof of the proposition-III

Recall that
M(ρ) = I2(ρ)

(
α + βJ(ρ)

)
.

If J is not a constant, take ρ̂ ∈ (ρ∗, 0). Then choosing α = −J(ρ̂)
and β = 1 we have that M(ρ̂) = 0. Since J is not a constant and
the function is analytic, this zero of M has a given finite
multiplicity. If this zero is simple we are done.
If not, by using again that I2(ρ) > 0 it is easy to see that taking ν
small enough, and with the suitable sign, the function

M(ρ) = (ν − J(ρ̂)) I2(ρ) + I2p−2(ρ)

has a simple zero ρ̂ν , near ρ = ρ̂, as we wanted to prove.

Armengol Gasull (UAB) Limit cycles for 3-monomial differential equations



Proof of the claim

We want to prove that

J(ρ) =
I2(p−1)(ρ)

I2(ρ)
, ρ ∈ (ρ∗, 0)

is not constant.
If J was constant, we start computing its value.
We first parameterize the oval H(r , θ) = ρ in polar coordinates, see
the figure.

r1(θ, ρ)
r2(θ, ρ)

θ = θ∗(ρ)

H(r , θ) = ρ

θ

For each θ ∈ [−θ∗(ρ), θ∗(ρ)] the values of r are r1(θ, ρ) and
r2(θ, ρ), with r1(θ, ρ) ≤ r2(θ, ρ). The equality between both rj only
holds for θ = ±θ∗(ρ).
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Proof of the claim-II

r1(θ, ρ)
r2(θ, ρ)

θ = θ∗(ρ)

H(r , θ) = ρ

θ

By the mean value theorem for integrals,

I2(ρ) =

∫
H=ρ

r2 dθ = 2

∫ θ∗(ρ)

0

(
r22 (θ, ρ)− r21 (θ, ρ)

)
dθ

= 2
(
r2(θ(ρ), ρ) + r1(θ(ρ), ρ)

) ∫ θ∗(ρ)

0
(r2(θ, ρ)− r1(θ, ρ)) dθ,

for some θ(ρ) ∈ (0, θ∗(ρ)).
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Proof of the claim-III

Similarly,

I2p−2(ρ) =

∫
H=ρ

r2p−2 dθ = 2

∫ θ∗(ρ)

0

(
r2p−22 (θ, ρ)− r2p−21 (θ, ρ)

)
dθ

= 2

2p−3∑
j=0

r2p−3−j2 (θ̂(ρ), ρ) r j1(θ̂(ρ), ρ)

∫ θ∗(ρ)

0
(r2(θ, ρ)− r1(θ, ρ)) dθ,

for some θ̂(ρ) ∈ (0, θ∗(ρ)). Moreover,

lim
ρ→0

θ(ρ) = lim
ρ→0

θ̂(ρ) = 0,

and

lim
ρ→0

rj(θ(ρ), ρ) = lim
ρ→0

rj(θ̂(ρ), ρ) = 21/(p−2), j = 1, 2.
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Proof of the claim-IV

Hence,

lim
ρ→0

J(ρ) = lim
ρ→0

2p−3∑
j=0

r2p−3−j2 (θ̂(ρ), ρ) r j1(θ̂(ρ), ρ)

r2(θ(ρ), ρ) + r1(θ(ρ), ρ)

=
(2p − 2)

(
21/(p−2)

)2p−3
2 · 21/(p−2)

= 4(p − 1).

So, we will assume to arrive to a contradiction, that
J(ρ) ≡ 4(p − 1).
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Proof of the claim-V

If J(ρ) ≡ 4(p − 1), then

J ′(ρ) =
I ′2p−2(ρ)I2(ρ)− I2p−2(ρ)I ′2(ρ)

I 22 (ρ)
≡ 0.

Then, it also holds that

I ′2p−2(ρ)

I ′2(ρ)
≡ 4(p − 1). (5)

By the Gelfand–Leray formula,

I ′2p−2(ρ) =

∫
H=ρ

(2p − 2)r2p−3
∂r

∂ρ
dθ.
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Proof of the claim-VI

We know that

I ′2p−2(ρ) =

∫
H=ρ

(2p − 2)r2p−3
∂r

∂ρ
dθ.

Since H(r(θ, ρ), θ)) = ρ for all ρ, we get that

∂H(r(θ, ρ), θ)

∂r

∂r(θ, ρ)

∂ρ
= 1.

Hence, using the differential equation in polar coordinates,

∂r(θ, ρ)

∂ρ
=

(
∂H(r(θ, ρ), θ)

∂r

)−1
=

1

r(θ, ρ)

dt

dθ
.

Therefore, we can parameterize the Abelian integrals using the
variable t.
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Proof of the claim-VII

Therefore, from

I ′2p−2(ρ) =

∫
H=ρ

(2p − 2)r2p−3
∂r

∂ρ
dθ.

and
∂r(θ, ρ)

∂ρ
=

1

r(θ, ρ)

dt

dθ
.

we get that

I ′2p−2(ρ) = (2p − 2)

∫ T (ρ)

0
r2p−4(t) dt,

where r(t) denotes the time parametrization of the periodic orbit
contained in H(r , θ) = ρ (for shortness, we omit the dependence
with respect to ρ) and T (ρ) is its period. Similarly,

I ′2(ρ) = 2

∫ T (ρ)

0
dt = 2 T (ρ).
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Proof of the claim-VIII

As a consequence of the expressions of I ′2p−2(ρ) and I ′2(ρ) we get
that

J(ρ) ≡ 4(p − 1)⇔
I ′2p−2(ρ)

I ′2(ρ)
≡ 4(p − 1)

and also is equivalent to∫ T (ρ)

0
r2p−4(t) dt

T (ρ)
= 4,

that can be written as∫ T (ρ)

0
Gρ(t) dt = 0, where Gρ(t) := r2p−4(t)−

(
21/(p−2)

)2p−4
,

or by symmetry, as

K (ρ) :=

∫ T (ρ)/2

0
Gρ(t) dt = 0,
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Proof of the claim-IX

We have that

K (ρ) :=

∫ T (ρ)/2

0
Gρ(t) dt = 0, (6)

where Gρ(t) := r2p−4(t)−
(
21/(p−2)

)2p−4
.

t = T (ρ)/2 t = T ∗(ρ)

t = 0

H(r , θ) = ρ

r = 21/(p−2)

We will prove that equality (6) is false for ρ near ρ∗ (energy of the
loop).
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Proof of the claim-X

t = T (ρ)/2 t = T ∗(ρ)

t = 0

H(r , θ) = ρ

r = 21/(p−2)

We introduce the time t = T ∗(ρ). Then, K (ρ) = K+(ρ) + K−(ρ),
where

K−(ρ) =

∫ T (ρ)/2

T∗(ρ)
Gρ(t) dt > 0, K+(ρ) =

∫ T∗(ρ)

0
Gρ(t) dt < 0.

Moreover, the function K+(ρ) has an upper bound and
limρ→ρ∗ K−(ρ) = −∞, which provides a contradiction.
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Proof of the second theorem

Theorem

ż = A z + B z̄ + C zmz̄n.

Then for m = 0 it has no limit cycles. For m ≥ 2, Re(A) 6= 0 and

|B| ≤ (m − 1)|Re(A)|
m

,

it has at most one limit cycle. Moreover if the limit cycle exists it
is hyperbolic and stable (resp. unstable) if sgn(Re(A)) > 0 (resp.
< 0) and it must surround the origin.
Moreover, when (2) does not hold there are equations of type (1)
having more than one limit cycle

Our proof is based on showing that all possible limit cycles, all
points of index +1 (except the origin), all nodal sectors of
semi-hyperbolic critical points and all polycycles have the same
stability.

Armengol Gasull (UAB) Limit cycles for 3-monomial differential equations



Proof of the second theorem-II

We fix Re(A) > 0. The case Re(A) < 0 can be studied similarly.
Assume that we have already proved the following facts:

(a) Focus and node points different from the origin are attractor.

(b) The origin is an unstable focus or node.

(c) Saddle-node points have the nodal sector of attracting type.

(d) All periodic orbits are hyperbolic and attractive limit cycles.

(e) All polycycles are attractors.

Then it is not difficult to prove the uniqueness of the limit cycle.
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Proof of the second theorem-III

Consider a periodic orbit γ of the differential equation and denote
by D the bounded region that it surrounds. First, we prove that
the origin must be in D.
Assume, to arrive to a contradiction, that the origin is not in D.
Then there are only a measure zero set of points in D that can
have α-limit (the unstable manifolds of the saddle and saddle-node
points). This result is in contradiction with the
Poincaré–Bendixson theory. Hence all periodic orbits must
surround the origin, and eventually other critical points.
To end the proof let us show that there is at most one limit cycle
surrounding the origin. Assume that there were two, γ1 and γ2.
Then arguing as in the previous case but on the annular bounded
region with boundary γ1 ∪ γ2 we arrive again to a contradiction.
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Proof of the second theorem-IV

Let us prove first that all periodic orbits are hyperbolic and
attractive.
It is well-known that the hyperbolicity and the stability of a given
limit cycle, z(t) = x(t) + iy(t), of period T of a vector field X is
controlled by its characteristic exponent,

σ =

∫ T

0
div(X )(x(t), y(t)) dt.

Writing it in polar coordinates,

σ =

∫ T

0

(
1

r

∂(rR(r , θ))

∂r
+
∂Φ(r , θ)

∂θ

)
(r(t), θ(t)) dt.

The expression in polar coordinates of our equation is

ṙ = R(r , θ) = Re(A + S(θ)) r + Re(U(θ)) rm+n,

θ̇ = Φ(r , θ) = Im(A + S(θ)) + Im(U(θ)) rm+n−1,

where
S(θ) = B e−2iθ, U(θ) = C e(m−n−1)iθ .
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Proof of the second theorem-V

Afer some computations

σ =

∫ T

0
2 Re(A) + 2m Re

(
U(θ(t))

)
rm+n−1(t) dt. (7)

Using that r = r(t), θ = θ(t) is a T -periodic orbit we get that

0 =

∫ T

0

ṙ(t)

r(t)
dt =

∫ T

0
Re
(
A+S(θ(t))

)
+Re

(
U(θ(t))

)
rm+n−1(t) dt,

and we can write (7) as

σ =

∫ T

0
2(1−m) Re(A)− 2m Re

(
S(θ(t))

)
dt

= 2m

∫ T

0

1−m

m
Re(A)− Re

(
B e−2iθ(t)

)
dt.

Clearly, since (1−m) Re(A) 6= 0, if |B| ≤ (m − 1)|Re(A)|/m, the
above integrand does not change sign, and hence σ 6= 0 and
sgn(σ) = − sgn(Re(A)), as we wanted to prove.
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Proof of the second theorem-VI

The stability of the critical points can be studied in a similar way.
We get that

div
(
X (r∗, θ∗)

)
= 2m

(1−m

m
Re(A)− Re

(
B e−2iθ

∗ ))
.

Therefore, under the hypotheses of the statement,

sgn
(

div
(
X (r∗, θ∗)

))
= − sgn(Re(A)).

Moreover, the determinant of the differential of X is
det((d X )(0,0)) = |A|2 − |B|2 which is positive because

|A|2 − |B|2 > |A|2 −
( m

m − 1

)2
|B|2 ≥ |A|2 −

(
Re(A)

)2 ≥ 0.
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Proof of the second theorem-VII

Finally we study the stability of the polycycles. Their corners are
formed by hyperbolic saddles or semi-hyperbolic saddles or
saddle-nodes. Since the divergence at them has always the sign of
−Re(A), we can prove that all the polycycles are stable (resp.
unstable) when Re(A) > 0 (resp. Re(A) < 0).
This ends the proof of the theorem
We have used the following result:

Proposition

Let Γ be a polycycle of an analytic vector field X with elementary
corners u1, u2, . . . , u` and such that div(X (uj)) < 0 (resp. > 0) for
all j . Then Γ is an attracting (resp. repelling) polycycle.

Its proof is based on:

Bamón, R.; Martin-Rivas, J C.; Moussu, R., Sur le
problème de Dulac. (French) [On Dulac’s problem] C. R.
Acad. Sci. Paris Sér. I Math. 303 (1986), 737–739.
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Stability of the polycicles. Idea of the proof

It is well-known, that when all the critical points at the corners are
hyperbolic, with eigenvalues −λj < 0 < µj , then Γ is stable
(respectively, unstable) if ρ(Γ) < 1 (respectively, ρ(Γ) > 1), where

ρ(Γ) =
∏̀
j=1

µj
λj
.

Fix for instance the case where, for j = 1, . . . , `, div(X (uj)) < 0.
Then, for all j , µj/λj < 1 and the proposition follows.
In general, when either ρ(Γ) = 1 or there are semi-hyperbolic
corners, the stability of the corresponding polycycles can be very
hard to determine. In particular, for each semi-hyperbolic corner u,
its associated local return Dulac map is flat (resp. vertical) when
div(X (u)) < 0 (resp. > 0). Recall that flat return maps have all
their derivatives zero at the origin and that vertical maps are the
inverse of flat maps. The really difficult situation appears when flat
and vertical local return maps coexist. Fortunately, under our
hypotheses all these maps are of the some type.
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Examples with limit cycles

Lemma

Consider differential equation

ż =
(
ε (1− λ) + i

)
z − ε (1 + λ) z̄ − 1

2
i z2, (8)

with λ ∈ R and ε > 0 a small parameter. Then the following
holds:

(i) When λ ∈ (−1/3, 0) and ε is small enough, it has a limit cycle
surrounding the critical point that when ε = 0 is at z = 2.

(ii) When λ ∈ [−3,−1/3], it is under the hypotheses of our
Theorem. Hence it has no limit cycles not surrounding the
origin.
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Examples with limit cycles-II

Lemma

There are equations of the form

ż = A z + B z̄ + z3, (9)

having at least two limit cycles, each one of them surrounding a
different critical point.

We consider the 1-parameter family,

ż = (−9+28 ε2+16 ε3+(4+8 ε)i) z+(10+18 ε+16 ε2+8 ε3) z̄+(4+8 ε) z3,
(10)

and prove that for ε > 0, small enough, a hyperbolic attracting
limit cycle is born via an Andronov–Hopf bifurcation and this limit
cycle surrounds the point z+

ε = 1 + (1/2 + ε)i . Since the equation
is invariant by the change of variables z → −z , a second
symmetric limit cycle appears surrounding another critical point.
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Examples with limit cycles-III

Finally, our numerical simulations also show that differential
equation ż = A z + B z̄ + z3,, with A = 1 + 9i/4, B = 13/4 + i/2
has at least four limit cycles, see its phase portrait on the Poincaré
disc.
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Thank you very much
for your attention!
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