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In this paper we investigate the problem of linearizability for a family of cubic 
complex planar systems of ordinary differential equations. We give a classification 
of linearizable systems in the family obtaining conditions for linearizability in terms 
of parameters. We also discuss coexistence of isochronous centers in the systems.
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1. Introduction

For planar real analytic differential systems of the form

ẋ = −y + P (x, y), ẏ = x + Q(x, y), (1.1)

where P and Q are polynomials without constant and linear terms, it is well known that the origin can be 
either a center or a focus. In the first case all solutions in a neighbourhood of the origin are periodic and 
their trajectories are closed curves. If the origin is a center, there arises the problem to determine whether 
all periodic solutions in a neighbourhood of the origin have the same period. This problem is known as the 
isochronicity problem.
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The studies of isochronicity of polynomial differential systems go back to Lloud [23], who found the 
necessary and sufficient conditions for isochronicity of system (1.1) when P and Q are homogeneous poly-
nomials of degree two. Latter on, Pleshkan [25] solved the isochronicity problem in the case when P and Q
are homogeneous polynomials of degree three (see also [20]). In the case when P and Q are homogeneous 
polynomials of degree five the problem was solved in [26], however, the case of homogeneous polynomial of 
degree four is still unsolved, and some partial results can be found in [6,10]. A number of works is devoted 
to the investigation of some other particular families (see, e.g. [3,6–9,11,18,21,22,24,28,30] and references 
given there).

The following family of planar cubic systems

ẋ = −y + p2(x, y) + xr2(x, y) = P (x, y),

ẏ = x + q2(x, y) + yr2(x, y) = Q(x, y),
(1.2)

where

p2 = a20x
2 + a11xy + a02y

2,

q2 = b20x
2 + b11xy + b02y

2,

r2 = r20x
2 + r11xy + r02y

2,

has been studied in [4,5,19,22] for the case when all parameters are real.
In [4] and [5] the authors have shown that real system (1.2) has a center and an isochronous center, 

respectively, if and only if in polar coordinates after some transformations it can be written in one of four and 
five forms, respectively. However from their results it is difficult to determine the conditions on parameters 
of polynomials p2, q2, r2 for existence of centers and isochronous centers. Conditions on parameters of 
p2, q2, r2 for the existence of a center were obtained in [22] and later on using another approach in [19].

In the work [22] published in 1997 the authors obtained the necessary and sufficient conditions for 
existence of isochronous center of system (1.2) represented by four series of condition on coefficients of 
the system, however in the more recent paper [5] published in 1999 the authors gave five conditions for 
existence of isochronous center of system (1.2). One of aims of this paper is to clarify the conditions for 
isochronicity of system (1.2). For this purpose we use an approach different from the ones of [22] and [5], 
namely we consider system (1.2) as system with complex coefficients and find conditions for linearization 
of the system. We obtain five series of conditions for linearizability of (1.2) and show that all linearizable 
systems are Darboux linearizable.

The paper is organized as follows. In Section 2 we recall some definitions and describe briefly a procedure 
to study the isochronicity and linearizability of polynomial systems. Applying this procedure, in Section 3 we 
present our main result, Theorem 3.1, which gives conditions for linearizability of system (1.2). In Section 4
we present the relation between the results obtained in Theorem 3.1 (and in [22]) and the results of [5]. 
Finally, in the last section we discuss the coexistence of isochronous centers in system (1.2).

2. Linearizability quantities and Darboux linearization

In this section we remind some statements related to isochronicity and linearizability of polynomial 
differential systems and describe an approach to compute the linearizability quantities for the system

ẋ = −y +
n∑

p+q≥2
ap,qx

pyq = P (x, y), ẏ = x +
n∑

p+q≥2
bp,qx

pyq = Q(x, y), (2.1)

where ap,q, bp,q are real or complex parameters.
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If the equilibrium point at the origin of real system (2.1) is known to be a center it is said that this 
center is isochronous if all periodic solutions of (2.1) in a neighbourhood of the origin have the same period. 
System (2.1) is said to be linearizable if there is an analytic change of coordinates

x1 = x +
∑

m+n≥2
cm,nx

myn := H1(x, y), y1 = y +
∑

m+n≥2
dm,nx

myn := H2(x, y), (2.2)

that reduces (2.1) to the linear system ẋ1 = −y1, ẏ1 = x1.
The following theorem, which goes back to Poincaré and Lyapunov, shows that the linearizability and 

isochronicity problems are equivalent. A proof can be found e.g. in [28].

Theorem 2.1. The origin of real system (2.1) is an isochronous center if and only if the system is lineariz-
able.

One can compute isochronicity quantities (obstacles for isochronicity) either in polar or cartesian coor-
dinates. Using polar coordinates x = r cos θ, y = r sin θ one first passes from system (2.1) to a system of 
the form

ṙ = r2R(r, cos θ, sin θ), θ̇ = 1 − rΘ(r, cos θ, sin θ)

and then either computes the period function directly (see e.g. [1]) or following the approach of [5] looks for 
a function

H(r, θ) = H1(θ)r + H2(θ)r2 + H3(θ)r3 + . . . , (2.3)

where H1 = cos θ and Hk are homogeneous trigonometric polynomials of degree k, such that

Ḧ + H ≡ 0, (2.4)

then the obstacles for fulfilment of (2.4) are isochronicity quantities (also called isochronous constants).
Using the cartesian coordinates it is convenient to write real system (2.1) in the complex form

ż = iz + Z(z, z̄), (2.5)

introducing the change z = x + iy and then to look for a linearization of equation (2.5) (the approach used 
in [22]).

Since we would like to perform the investigation differently from [5] and [22] we use another compu-
tational approach. Namely, we look for conditions for linearizability of system (2.1) arising from applying 
transformation (2.2).

Taking the derivatives with respect to t on both sides of each equation of (2.2) we obtain

ẋ1 = ẋ +

⎛
⎝ ∑

m+n≥2
mcm,nx

m−1yn

⎞
⎠ ẋ +

⎛
⎝ ∑

m+n≥2
ncm,nx

myn−1

⎞
⎠ ẏ,

ẏ1 = ẏ +

⎛
⎝ ∑

mdm,nx
m−1yn

⎞
⎠ ẋ +

⎛
⎝ ∑

ndm,nx
myn−1

⎞
⎠ ẏ.
m+n≥2 m+n≥2
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Hence, the change of coordinates (2.2) linearizes system (2.1) if it holds that

∑
m+n≥2

dm,nx
myn +

n∑
p+q≥2

ap,qx
pyq +

⎛
⎝ ∑

m+n≥2
mcm,nx

m−1yn

⎞
⎠

⎛
⎝−y +

n∑
p+q≥2

ap,qx
pyq

⎞
⎠

+

⎛
⎝ ∑

m+n≥2
ncm,nx

myn−1

⎞
⎠

⎛
⎝x +

n∑
p+q≥2

bp,qx
pyq

⎞
⎠ ≡ 0,

−
∑

m+n≥2
cm,nx

myn +
n∑

p+q≥2
bp,qx

pyq +

⎛
⎝ ∑

m+n≥2
mdm,nx

m−1yn

⎞
⎠

⎛
⎝−y +

n∑
p+q≥2

ap,qx
pyq

⎞
⎠

+

⎛
⎝ ∑

m+n≥2
ndm,nx

myn−1

⎞
⎠

⎛
⎝x +

n∑
p+q≥2

bp,qx
pyq

⎞
⎠ ≡ 0.

(2.6)

Obstacles for the fulfilment of equations in (2.6) give us necessary conditions for existence of a linearizing 
change of coordinates (2.2) of system (2.1). Thus, a computational procedure to find necessary conditions 
for linearizability can be described as follows.

(1) Write the left hand sides of two equations in (2.6) in the form 
∑

k,l≥2 h
(k,l)
1 xkyl, and 

∑
k,l≥2 h

(k,l)
2 xkyl, 

respectively, where h(k,l)
1 and h(k,l)

2 are polynomials in the parameters ap,q, bp,q (p + q ≥ 2) of system (2.1)
and cm,n, dm,n (m + n ≥ 2) of (2.2).

(2) Solve the polynomial system h(k,l)
i = 0 (i = 1, 2, k+ l = 2) for the coefficients cm,n, dm,n (m +n = 2) 

of (2.2).
(3) Solve the polynomial system h(k,l)

i = 0 (i = 1, 2, k+ l = 3) for the coefficients cm,n, dm,n (m +n = 3) 
of (2.2). In general case the system cannot be solved. However dropping from it two suitable equations we 
obtain a system that has a solution. We denote the two dropped polynomials on the left hand sides of these 
two equations by i1 and j1.

(4) Proceed step-by-step solving the polynomial systems h(k,l)
i = 0 (i = 1, 2, k + l = r, r > 3). Generally 

speaking, at all steps when r = k+ l is an odd number the polynomial system h(k,l)
i = 0 (i = 1, 2, k+ l = r) 

cannot be solved. Dropping on each such step two suitable equations (and denoting by i(r−1)/2 and j(r−1)/2
the corresponding polynomials), we obtain a system that has a solution.

This procedure yields the polynomials ik and jk which are polynomials in the parameters ap,q and bp,q of 
system (2.1) called the linearizability quantities. It is clear that system (2.1) admits a linearizing change of 
coordinates (2.2) if and only if ik = jk = 0 for all k > 1. Thus, the simultaneous vanishing of all linearizability 
quantities provides conditions which characterize when the system (2.1) is linearizable (equivalently it has 
an isochronous center at the origin). The ideal L = 〈i1, j1, i2, j2, ...〉 ⊂ C[a, b] defined by the linearizability 
quantities is called the linearizability ideal and its affine variety, VL = V(L), is called the linearizability 
variety. Therefore, the linearizability problem will be solved finding the variety VL.

By the Hilbert Basis Theorem there exists a positive integer k such that L = Lk = 〈i1, j1, ..., ik, jk〉. 
Note that the inclusion VL ⊂ V(Lk) holds for any k ≥ 1. The opposite inclusion is verified finding the 
irreducible decomposition of the variety V(Lk) and then checking that any point of each component of the 
decomposition corresponds to a linearizable system. The irreducible decomposition can be found using the 
routine minAssGTZ [14] (which is based on the algorithm of [15]) of the computer algebra system Singular

[13], however it involves extremely laborious calculations.
One of the most efficient methods to find a linearizing change of coordinates is the Darboux linearization 

method. To construct a Darboux linearization it is convenient to perform the substitution

z = x + iy, w = x− iy (2.7)



W. Fernandes et al. / J. Math. Anal. Appl. 450 (2017) 795–813 799
obtaining from (2.1) a system of the form

ż = i(z + X(z, w)), ẇ = −i(w + Y (z, w)),

and, after the rescaling of time by i, the system

ż = z + X(z, w), ẇ = −w − Y (z, w). (2.8)

Since the change of coordinates (2.7) is analytic, system (2.1) is linearizable if and only if system (2.8) is 
linearizable.

We remind that a Darboux factor of system (2.8) is a polynomial f(z, w) satisfying

∂f

∂z
ż + ∂f

∂w
ẇ = Kf,

where K(z, w) is a polynomial called the cofactor of f . A Darboux linearization of system (2.8) is an analytic 
change of coordinates z1 = Z1(z, w), w1 = W1(z, w), such that

Z1(z, w) =
m∏
j=0

f
αj

j (z, w) = z + Z̃1(z, w), W1(z, w) =
n∏

j=0
g
βj

j (z, w) = w + W̃1(z, w),

which linearizes (2.8), where fj , gj ∈ C[z, w], αj , βj ∈ C, and Z̃1 and W̃1 have neither constant nor linear 
terms. System (2.8) is said to be Darboux linearizable if it admits a Darboux linearization. The next theorem 
provides a way to construct a Darboux linearization using Darboux factors (see e.g. [28] for a proof).

Theorem 2.2. System (2.8) is Darboux linearizable if and only if there exist s + 1 ≥ 1 Darboux factors 
f0, ..., fs with corresponding cofactors K0, ..., Ks and t + 1 ≥ 1 Darboux factors g0, ..., gt with corresponding 
cofactors L0, ..., Lt with the following properties:

a. f0(z, w) = z + · · · but fj(0, 0) = 1 for j ≥ 1;
b. g0(z, w) = w + · · · but gj(0, 0) = 1 for j ≥ 1; and
c. there are s + t constants α1, ..., αs, β1, ..., βt ∈ C such that

K0 + α1K1 + · · · + αsKs = 1 and L0 + β1L1 + · · · + βtLt = −1. (2.9)

The Darboux linearization is given by

z1 = H1(z, w) = f0f
α1
1 · · · fαs

s , y1 = H2(z, w) = g0g
β1
1 · · · gβt

t .

Sometimes we cannot find enough Darboux factors to construct Darboux linearizations of both equations 
of the system. Let us say that we can find only transformation z1, which linearizes the first equation of (2.8). 
If we can find a first integral of system (2.8) of the form Ψ = xy+h.o.t. then the second equation of (2.8) can 

be linearized by the transformation w1 = Ψ
z1

. We note also that if system (2.8) has p irreducible Darboux 

factors f1, ..., fp with associated cofactors K1, ..., Kp, satisfying s1K1 + ... + spKp = 0, then the function 
H = fs1

1 ...f
sp
p is a first integral of (2.8).

3. Linearizability of system (1.2)

In this section we obtain conditions for linearizability of system (1.2) with complex parameters.
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Without loss of generality, we suppose that b02 = −b20 in system (1.2). Indeed, if a02 + a20 �= 0, we can 
apply the transformation x̃ = x + (b02 + b20)y/(a02 + a20) and ỹ = y − (b02 + b20)x/(a02 + a20) obtaining a 
system of such form, and if a02 + a20 = 0, we only need to make the change (x, y) → (y, x) together with 
the time scaling dt = −dτ to obtain the same effect.

The following theorem gives the conditions for linearizability of system (1.2).

Theorem 3.1. Complex system (1.2) with b02 = −b20 is linearizable at the origin if one of the following 
conditions holds:

(1) 4a2
20 + a2

11 + 4a11b20 + 4b220 − 4a20b11 + b211 = r20 + r02 = a02 + a20 = 0,
(2) a02 = r02 = a11 + 2b20 = b11 − 4a20 = r11 + b220 = r20 − a20b20 = 0,
(3) 4a02 + a20 = a11 + 2b20 = 2b11 − a20 = 4r02 + a20b20 = r11 + b220 = r20 − a20b20 = 0,
(4) a02 = r02 = a11 + 2b20 = b11 − a20 = r20 − a20b20 = 0,
(5) 9a2

11−12a11b20+4b220+4b211 = −6a11b20+4b220+2a20b11−b211 = 6a20a11−4a20b20−3a11b11+10b20b11 =
4a2

20 − 12a11b20 + 24b220 − b211 = −4
3b

2
20 −

b211
3 + r11 = 4

9a20b20 + a11b11
6 − b20b11

9 + r02 = a20a11
6 − a20b20

3 +
a11b11

12 − b20b11
6 + r20 + r02 = a02 + a20

3 − b11
3 = 0.

Proof. Using the computer algebra system Mathematica following the computational procedure described 
in the previous section we computed the first eight pairs of the linearizability quantities for system (1.2). 
The first pair is

i1 = 1
9(10a2

02 + a2
11 + 10a02a20 + 4a2

20 − a02b11 − 5a20b11 + b211 + 4a11b20 + 4b220),

j1 = 1
3(a02a11 + a11a20 − 2a02b20 − 2a20b20 + 4r02 + 4r20),

and the second pair reduced by the Groebner basis of 〈i1, j1〉 is

ĩ2 = 1
750(−10a2

11a
2
20 + 200a02a3

20 + 160a4
20 + 10a2

11a20b11 − 600a02a
2
20b11 − 520a3

20b11

+ 6a2
11b

2
11 + 490a02a20b

2
11 + 464a2

20b
2
11 − 96a02b

3
11 − 110a20b

3
11 + 6b411 − 170a3

11b20

− 720a11a
2
20b20 + 720a11a20b11b20 − 146a11b

2
11b20 − 550a2

11b
2
20 + 2600a02a20b

2
20

+ 3080a2
20b

2
20 − 1580a02b11b

2
20 − 2060a20b11b

2
20 + 154b211b220 − 160a11b

3
20 + 520b420

− 100a11a20r02 + 560a11b11r02 − 6800a20b20r02 + 2180b11b20r02 + 5250r2
02

− 55a2
11r11 + 50a02a20r11 − 170a2

20r11 + 5a02b11r11 + 225a20b11r11 − 55b211r11

− 220a11b20r11 − 220b220r11 − 100a11a20r20 + 560a11b11r20 + 800a02b20r20

− 6000a20b20r20 + 2180b11b20r20 + 8500r02r20 + 3250r2
20),

j̃2 = 1
120(2a3

11a20 + 8a11a
3
20 − a3

11b11 − 12a11a
2
20b11 + 6a11a20b

2
11 − a11b

3
11 − 4a2

11a20b20

+ 48a02a
2
20b20 − 6a2

11b11b20 + 16a02a20b11b20 + 56a2
20b11b20 − 4a02b

2
11b20

− 8a20b
2
11b20 − 2b311b20 − 40a11a20b

2
20 − 12a11b11b

2
20 − 48a20b

3
20 − 8b11b320

− 24a2
11r02 − 16a2

20r02 + 64a20b11r02 + 4b211r02 − 64a11b20r02 − 32b220r02

+ 128a02b20r11 + 128a20b20r11 − 128r02r11 − 8a2
11r20 − 32a02a20r20 + 16a2

20r20

− 80a b r − 80a b r + 20b2 r + 32b2 r − 128r r ).
02 11 20 20 11 20 11 20 20 20 11 20
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The other polynomials have very long expressions, so we do not present them here, however, the reader can 
easily compute them using any available computer algebra system.

To find conditions for linearizability we have to “solve” the system i1 = · · · = i8 = j1 = · · · = j8 = 0, or, 
more precisely, to find the irreducible decomposition of the variety V(L8) of the ideal L8 = 〈i1, j1, ..., i8, j8〉. 
Although nowadays there are few algorithms for computing such decompositions the calculations seldom can 
be completed over the field of rational numbers for non-trivial ideals due to high complexity of Groebner 
bases computations. We tried to perform the decomposition of the variety of V(L8) using the routine
minAssGTZ [14] of Singular [13], however we have not succeeded to complete computations neither over 
Q nor over the field Z32003.

To find the decomposition we proceed as follows. First, we use the conditions for isochronicity of real 
system (1.2) obtained in [22], which are conditions (2)–(4) of the statement of the theorem and the condition

a02 + a20 = a11 + 2b20 = b11 − 2a20 = r02 + r20 = 0. (3.1)

It is clear that under condition (3.1) and conditions (2)–(4) of the theorem complex system (1.2) is lineariz-
able as well.

Denote by J1 the ideal generated by polynomials defining condition (3.1), that is,

J1 = 〈a02 + a20, a11 + 2b20, b11 − 2a20, r02 + r20〉,

and by J2, J3, J4 ideals generated by polynomials of conditions (2)–(4) of the theorem.
As we have mentioned above we are not able to compute the decomposition of the variety V(L8) of L8

(that is, to find the minimal associate primes of L8) even over fields of finite characteristic. However using 
the ideals J1–J4 we can find the decomposition of the variety V(L8). The idea is to subtract from V(L8)
the components defined by the ideals J1–J4 and then find the decomposition of the remaining variety. For 
this aim we use the theorem (see, e.g. [12, Chapter 4] for the proof), which says that given two ideals I and 
H in k[x1, . . . , xn],

V(I) \ V(H) ⊂ V(I : H) ,

where the overline indicates the Zariski closure. Moreover, if k = C and I is a radical ideal, then

V(I) \ V(H) = V(I : H). (3.2)

Thus, to remove the components V(J1), ..., V(J4) from V(L8), we compute over the field Z32003 with the
intersect of Singular the intersection J = J1∩J2∩J3∩J4 (clearly, V(J) = V(J1) ∪V(J2) ∪V(J3) ∪V(J4)), 
then with the radical we compute R =

√
L8, then with quotient we compute the ideal G = R : J and, 

finally, with minAssGTZ we compute the minimal associate primes of G, obtaining that G = G1 ∩G2, where 
G1 = 〈r20 + r02, a02 + a20a

2
20 + 8001a2

11 + a11b20 + b220 − a20b11 + 8001b211〉 and G2 = 〈a02 + 10668a20 −
10668b11, a11r02−10667b20r02+14224a20r11−14224b11r11, a20r02+16000b11r02+16001a11r11−b20r11, r2

20+
6r20r02+9r2

02+r2
11, b11r20+3b11r02−16000a11r11−b20r11, b20r20+3b20r02−16001a20r11−8001b11r11, a11r20−

2b20r02 − a20r11 − 16001b11r11, a20r20 − 15997b11r02 + 8003a11r11 − 16001b20r11, a11b11 − 2b20b11 + 4r20 +
6r02, b220+8001b211+8000r11, a11b20−10668a20b11+10668b211+16001r11, a20b20−16001b20b11+16000r20, a2

11−
14224a20b11 − 7111b211 − 10668r11, a20a11 + b20b11 + r20 + 3r02, a2

20 − a20b11 + 8000b211 + 3r11, a20b11r11 −
16001b211r11 − 9r20r02 − 27r2

02 − 6r2
11, b20b11r02 − 8001b211r11 + 8003r2

02 + r2
11, a20b

2
11 − 16001b311 − 18b20r02 −

6a20r11, b211r02r11 + b20b11r
2
11 + 15997r20r2

02 + 15988r3
02 − r20r

2
11 + 15997r02r2

11, b
3
11r02 + b20b

2
11r11 − 9b20r2

02 −
3b11r02r11 − 4b20r2

11〉. Since 8001 ≡ 1
4 mod 32003, lifting the ideal G1 from the ring of polynomials over the 

field Z32003 to the ring of polynomials over the field Q we obtain polynomials given in condition (1) of the 
theorem.
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Similarly, lifting the ideal G2 we obtain the ideal which we denote by J5 (the lifting can be performed 
algorithmically using the algorithm of [29] and the Mathematica code of [16]). Simple computations show 
that V(J5) is the same set as the set given by conditions (5) of the theorem.

To check the correctness of the obtained conditions we use the procedure described in [27]. First, we 
computed the ideal J̃ = J1 ∩J2 ∩J3 ∩J4 ∩J5, which defines the union of all five components of the theorem 
and checked that Groebner bases of all ideals 〈J̃ , 1 −wik〉, 〈J̃ , 1 −wjk〉 (where k = 1, . . . , 8 and w is a new 
variable) computed over Q are {1}. By the Radical Membership Test (see e.g. [12,28]) it means that

V(L8) ⊂ V(J̃).

To check the opposite inclusion it is sufficient to check that

〈L8, 1 − wf〉 = 〈1〉 (3.3)

for all polynomials f from a basis of J̃ . Unfortunately, we were not able to perform the check over Q, 
however we have checked that (3.3) holds over few fields of finite characteristic. It yields that (3.3) holds 
with high probability [2].1

We now prove that under each of conditions (1)–(5) of the theorem the system is linearizable.

Case (1): In this case a11 = −2b20 ± (2a20 − b11)i. We consider only the case a11 = −2b20 + (2a20 − b11)i, 
since when a11 = −2b20 − (2a20 − b11)i the consideration is analogous. In this case system (1.2) becomes

ẋ = −y + a20x
2 + (−2b20 + (2a20 − b11)i)xy − a20y

2 + r20x
3 + r11x

2y − r20xy
2,

ẏ = x + b20x
2 + b11xy − b20y

2 + r20x
2y + r11xy

2 − r20y
3.

(3.4)

After the substitution (2.7) we obtain from (3.4) the system

ż = z − (ia20 − b20)z2 − 1
4(r11 + 2ir20)z3 + 1

4(r11 − 2ir20)zw2,

ẇ = −w + 1
2(ib11 − 2ia20)z2 − 1

2(ib11 + 2b20)w2 − 1
4(r11 + 2ir20)z2w + 1

4(r11 − 2ir20)w3.

(3.5)

System (3.5) has Darboux factors

l1 = z,

l3 = 1 + 1
16(−8ia20 + 8b20 − 4

√
2η−)z + 1

4(ib11 + 2b20 − iξ)w,

l4 = 1 + 1
16(−8ia20 + 8b20 + 4

√
2η−)z + 1

4(ib11 + 2b20 − iξ)w,

l5 = 1 + 1
16(−8ia20 + 8b20 − 4

√
2η+)z + 1

4(ib11 + 2b20 + iξ)w,

l6 = 1 + 1
16(−8ia20 + 8b20 + 4

√
2η+)z + 1

4(ib11 + 2b20 + iξ)w,

where ξ =
√

b211 − 4ib11b20 − 4b220 − 4r11 + 8ir20 and

η± =
√

−2a2
20 + 2a20b11 − b211 − 8ia20b20 + 2ib11b20 + 2b220 + 2r11 + 4ir20 ± 2a20ξ ∓ b11ξ.

1 For this reason we say in the statement of Theorem 3.1 that conditions (1)–(5) are only necessary, but not necessary and 
sufficient conditions for linearizability of system (1.2).
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It is easy to verify that the first of conditions (2.9) is satisfied with f0 = l1, f1 = l4, f2 = l5, f3 = l6, and

α1 = −b11 − 2ib20 + ξ

2ξ ,

α2 = b11η+ − 2ib20η+ − b11η− + 2ib20η− − 2i
√

2a20ξ + 2
√

2b20ξ − η+ξ − η−ξ

4η+ξ
,

α3 = b11(η+ + η−) + (2i
√

2a20 − η+ + η−)ξ − 2ib20(η+ + η− − i
√

2ξ)
4η+ξ

.

Moreover, the system has the Darboux first integral

Ψ(z, w) = ls13 ls24 ls35 ls46 = 1 − i

2
√

2
η−ξzw + o(||(z, w)||3),

where s1 = 1, s2 = −1, s3 = −η−
η+

, s4 = η−
η+

, f1 = l3, f2 = l4, f3 = l5, and f4 = l6.
Therefore, the system is linearizable by the substitution

z1 = l1l
α1
4 lα2

5 lα3
6 , w1 = 2

√
2(Ψ(z, w) − 1)i

η−ξz1
.

Case (2): In this case system (1.2) becomes

ẋ = −y + a20x
2 + a20b20x

3 − 2b20xy − b220x
2y = (b20x + 1)(a20x

2 − b20xy − y),

ẏ = x + b20x
2 + 4a20xy + a20b20x

2y − b20y
2 − b220xy

2,
(3.6)

and after substitution (2.7) we have the system

ż = z +
(
b20 − i

5
4a20

)
z2 − i

2a20zw + i
3
4a20w

2 +
(
b220
4 − i

4a20b20

)
z3

− i

2a20b20z
2w −

(
b220
4 + i

4a20b20

)
zw2,

ẇ = −w + i
3
4a20z

2 − i

2a20zw −
(
b20 + i

5
4a20

)
w2 +

(
b220
4 − i

4a20b20

)
z2w

− i

2a20b20zw
2 −

(
b220
4 + i

4a20b20

)
w3.

(3.7)

System (3.7) has the Darboux factors

l1 = z +
(
b20
2 + i

4a20

)
z2 +

(
b20
2 + i

2a20

)
zw + i

4a20w
2,

l2 = w − i

4a20z
2 +

(
b20
2 − i

2a20

)
zw +

(
b20
2 − i

4a20

)
w2,

l3 = 1 + b20
2 z + b20

2 w,

l4 = 1 − i

2 (4a20 + ib20) z + 1
2 (b20 + 4ia20)w,

which, when a20 �= 0, allow to construct the Darboux linearization

z1 = l1l
α1
3 lα2

4 , w1 = l2l
β1
3 lβ2

4 ,
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where

α1 = −6a20 − ib20
4a20

, α2 = −2a20 + ib20
4a20

,

β1 = −6a20 + ib20
4a20

, β2 = −2a20 − ib20
4a20

.

Since the set of linearizable system is an affine variety and therefore it is a closed set in the Zariski 
topology, the system is linearizable also when a20 = 0.

Case (3): In this case system (1.2) becomes

ẋ = −y + a20x
2 − 2b20xy −

a20

4 y2 + x

(
a20b20x

2 − b220xy −
a20b20

4 y2
)
,

ẏ = x + b20x
2 + a20

2 xy − b20y
2 + y

(
a20b20x

2 − b220xy −
a20b20

4 y2
)
,

(3.8)

and the corresponding system of the form (2.8) is

ż = z +
(
b20 − i

7
16a20

)
z2 − i

3
8a20zw − i

3
16a20w

2 +
(
b220
4 − i

5
16a20b20

)
z3

− i
3
8a20b20z

2w −
(
b220
4 + i

5
16a20b20

)
zw2,

ẇ = −w − i
3
16a20z

2 − i
3
8a20zw −

(
b20 + i

7
16a20

)
w2 +

(
b220
4 − i

5
16a20b20

)
z2w

− i
3
8a20b20zw

2 −
(
b220
4 + i

5
16a20b20

)
w3.

(3.9)

System (3.9) has the following Darboux factors

l1 = z +
(
b20
2 − i

16a20

)
z2 +

(
b20
2 + i

8a20

)
zw − i

16a20w
2,

l2 = w + i

16a20z
2 +

(
b20
2 − i

8a20

)
zw +

(
b20
2 + i

16a20

)
w2,

l3 = 1 + b20
2 z + b20

2 w,

l4 = 1 − i

4 (a20 + i2b20) z + i

4 (a20 − i2b20)w,

which, when a20 �= 0, allow to construct the Darboux linearization

z1 = l1l
α1
3 lα2

4 , w1 = l2l
β1
3 lβ2

4 ,

where

α1 = i2b20
a20

, α2 = −2a20 + i2b20
a20

,

β1 = − i2b20
a20

, β2 = −2a20 − i2b20
a20

.

If a20 = 0, case (3) is equivalent to case (2). Thus system (3.9) is linearizable.
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Case (4): In this case system (1.2) becomes

ẋ = −y + a20x
2 − 2b20xy + a20b20x

3 + r11x
2y,

ẏ = x + b20x
2 + a20xy − b20y

2 + a20b20x
2y + r11xy

2,
(3.10)

and after the substitution (2.7) we obtain the system

ż = z + (b20 − i/2a20) z2 − i

2a20zw −
(
r11
4 + i

4a20b20

)
z3 − i

2a20b20z
2w

+
(
r11
4 − i

4a20b20

)
zw2,

ẇ = −w − i

2a20zw −
(
b20 + i

2a20

)
w2 −

(
r11
4 + i

4a20b20

)
z2w − i

2a20b20zw
2

+
(
r11
4 − i

4a20b20

)
w3,

which admits the Darboux factors

l1 = z, l2 = w,

l3 = 1 + 1
4 (−ia20 + 2b20 + iC) z − i

4 (−a20 + i2b20 + C)w,

l4 = 1 − i

2 (a20 + i2b20) z + i

2 (a20 − i2ib20)w − i

4 (a20b20 − ir11) z2

+ 1
2
(
2b220 + r11

)
zw + i

4 (a20b20 + ir11)w2,

where C =
√
a2
20 − 4b220 − 4r11. When C �= 0 we obtain the Darboux linearization

z1 = l1l
α1
3 lα2

4 , w1 = l2l
β1
3 lβ2

4 ,

where

α1 = a20 + i2b20
C

, α2 = −a20 + i2b20 + C

2C ,

β1 = a20 − i2b20
C

, β2 = −a20 − i2b20 + C

2C .

Using the same argument as in case (2) we conclude that the system is linearizable also when C = 0.

Case (5): If b20 �= 0, we can rewrite the condition as

r11 = 3a2
02 + 2a20a02 + a2

20
3 + 4b220

3 , r02 = 27a3
02 + 9a2

02a20 − 3a02a
2
20 − a3

20 − 16a20b
2
20

36b20
,

a11 = −9a2
02 − a2

20 − 4b220
6b20

, r20 = a02b20 + a20b20, b11 = a20 + 3a02, a20 = 3a02 ± 4b20i.

We only consider the case a20 = 3a02 +4b20i, since when a20 = 3a02 − 4b20i, the consideration is analogous. 
Under this condition after the substitution (2.7) system (1.2) becomes



806 W. Fernandes et al. / J. Math. Anal. Appl. 450 (2017) 795–813
ż = z + (3b20 − 3ia02)z2 + (2b20 − 2ia02)zw + 2ia02w
2 + (2b220 − 2a2

02 − 4ia02b20)z3

− (2a2
02 + 4ia02b20 − 2b220)z2w + (4a2

02 + 4ia02b20)zw2,

ẇ = −w
(
1 + (2ia02 − 2b20)z + (ia02 − b20)w + (2a2

02 + 4ia02b20 − 2b220)z2

+ (2a2
02 + 4ia02b20 − 2b220)zw − (4a2

02 + 4ia02b20)w2
)
.

(3.11)

System (3.11) has the Darboux factors

l1 = z − i(a02 + ib20)z2 + 2ia02

3 w2,

l2 = w,

l3 = 1 − 2i(a02 + ib20)z + i(a02 + ib20)w,

l4 = 1 − 4i(a02 + ib20)z − 4(a02 + ib20)2z2 + 2i(a02 + ib20)w + 4(a02 + ib20)2zw

+ (−a2
02 − 2ia02b20 + b220)w2,

which allow to construct the Darboux linearization

z1 = l1l
−1
4 , w1 = l2l

− 1
2

4 .

Similarly as above, using the Zariski closure argument we conclude that the system is linearizable also 
when b20 = 0. �
4. Relation between isochronicity conditions of [5] and Theorem 3.1

In [5] the authors presented conditions for isochronicity of system (1.2) when all parameters of the system 
are real. We investigate the relation between their conditions and the conditions presented in Theorem 3.1
and in [22]. The following result is obtained in [5].

Theorem 4.1 (Theorem 1 of [5]). The origin of system (1.2) is an isochronous center if and only if (1.2)
can be transformed in one of the following forms in polar coordinates:

(a) ṙ = r2(cos 3θ− 7
3 cos θ−k1 sin θ) +r3(−2k1

3 − 2k1
3 cos 2θ− k2

1
2 sin 2θ), θ̇ = 1 +r(− sin 3θ+k1 cos θ− sin θ),

(b) ṙ = r2(cos 3θ+ 13
3 cos θ−k1 sin θ) +r3(2k1+ 10k1

3 cos 2θ− k2
1
2 sin 2θ), θ̇ = 1 +r(− sin 3θ+k1 cos θ+ 1

3 sin θ),
(c) ṙ = r2k1 cos θ + r3(k2 cos 2θ + k3 sin 2θ), θ̇ = 1 + rk1 sin θ,
(d) ṙ = r2(k1 cos θ + k2 sin θ) + r3(k1k2

2 − k1k2
2 cos 2θ + k3 sin 2θ), θ̇ = 1 + rk1 sin θ and

(e) ṙ = r2(k1 cos θ + k2 sin θ) + r3(k3 + k4 cos 2θ + k5 sin 2θ), θ̇ = 1,

where kj’s in each system are independent and are functions of original parameters in system (1.2).

In [5] the second equation of (c) is written as θ̇ = 1 + rk1 cos θ, however it is a misprint which was 
corrected in [8].

As it is mentioned in the previous section by the result of [22] real system (1.2) is linearizable (equivalently, 
it has isochronous center) if and only if condition (3.1) or one of conditions (2)–(4) of Theorem 3.1 holds. 
The following theorem gives the relation of the results of [22] (and Theorem 3.1) and [5].

Theorem 4.2. System (1.2) under conditions (3.1), (2), (3), and (4) of Theorem 3.1 can be changed into 
system (c), (a), (b) and (d) of Theorem 4.1, respectively.
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Proof. System (1.2) under condition (3.1) becomes

ẋ = −y + a20x
2 − 2b20xy − a20y

2 + x(r20x2 + r11xy − r20y
2) = P1(x, y),

ẏ = x + b20x
2 + 2a20xy − b20y

2 + y(r20x2 + r11xy − r20y
2) = Q1(x, y).

(4.1)

Applying the linear transformation

x = −a20x̃ + b20ỹ, y = b20x̃ + a20ỹ

and a time scaling dt = −dt̃, we change system (4.1) to

ẋ = −y + k1(x2 − y2) + x
(
k2x

2 + 2k3xy − k2y
2) ,

ẏ = x + 2k1xy + y
(
k2x

2 + 2k3xy − k2y
2) , (4.2)

where k1 = a2
20 + b220, k2 = a20b20r11 − a2

20r20 + b220r20, k3 = (a2
20r11 − b220r11 + 4a20b20r20)/2, and below 

we write x and y instead of x̃ and ỹ. System (4.2) in polar coordinates x = r cos θ, y = r sin θ becomes 
system (c).

System (1.2) under condition (2) of Theorem 3.1 becomes system (3.6). The transformation x = 4
3a20

x̃, 
y = − 4

3a20
ỹ and the time scaling dt = −dt̃ change system (3.6) to

ẋ = −y − 4
3x

2 − 2k1xy −
x

3
(
4k1x

2 + 3k2
1xy

)
,

ẏ = x + k1x
2 − 16

3 xy − k1y
2 − y

3
(
4k1x

2 + 3k2
1xy

)
,

(4.3)

where we write x and y instead of x̃ and ỹ, and k1 = 4b20
3a20

. System (4.3) in polar coordinates x = r cos θ, 
y = r sin θ becomes system (a).

System (1.2) under condition (3) becomes system (3.8). Applying the transformation x = 16
3a20

x̃, y =
16

3a20
ỹ, we transform (3.8) to the system

ẋ = −y − 16
3 x2 − 2k1xy −

4
3y

2 + k1

3 x
(
16x2 − 3k1xy − 4y2) ,

ẏ = x + k1x
2 + 8

3xy − k1y
2 + k1

3 y
(
16x2 − 3k1xy − 4y2) ,

(4.4)

where we write x and y instead of x̃ and ỹ, and k1 = 16b20
3a20

. System (4.4) in polar coordinates x = r cos θ, 
y = r sin θ becomes system (b).

System (1.2) under condition (4) becomes system (3.10). The transformation x = ỹ, y = x̃ and a time 
scaling dt = −dt̃ change system (3.10) to

ẋ = −y + k1x
2 + k2xy − k1y

2 + x
(
2k3xy + k1k2y

2) ,
ẏ = x + 2k1xy + k2y

2 + y
(
2k3xy + k1k2y

2) , (4.5)

where k1 = b20, k2 = −a20, k3 = − r11
2 , and we write x and y instead of x̃ and ỹ. System (4.5) in polar 

coordinates x = r cos θ, y = r sin θ becomes system (d). �
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However system (e) from Theorem 4.1 does not have an isochronous center at the origin, since, generally 
speaking, the origin of the system is not a center, but a focus. Indeed, system (e) can be written in the 
Cartesian coordinates x = r cos(θ), y = r sin(θ) as

ẋ = −y + k1x
2 + k2xy + x

(
(k3 + k4)x2 + (k3 − k4)y2 + 2k5xy

)
,

ẏ = x + k1xy + k2y
2 + y

(
(k3 + k4)x2 + (k3 − k4)y2 + 2k5xy

)
.

(4.6)

We computed the first two Lyapunov quantities for system (4.6) and obtained η1 = k3 and η2 = 2k1k2k5 +
k4(k2

1 − k2
2). Thus, the origin of system (e) is a focus, which is stable if k3 < 0 or k3 = 0, η2 < 0, and 

unstable if k3 > 0 or k3 = 0, η2 > 0. So, the necessary condition for existence of a center and an isochronous 
center at the origin of system (e) is k3 = η2 = 0.

When k3 = η2 = 0, by the linear transformation x1 = x + k2
k1
y, y1 = y − k2

k1
x, system (4.6) is changed 

into

ẋ = −y + k1x
2 − k1k4

k2
x2y,

ẏ = x + k1xy − k1k4
k2

xy2.
(4.7)

System (4.7) is a special case of system (3.10) when b20 = 0, which is system (1.2) under condition (4) of 
Theorem 3.1 after adding the condition b20 = 0. Therefore, only when k3 = η2 = 0, the origin of system 
(4.6), and thus of system (e), is an isochronous center.

It appears the authors of [5] made the following mistake in their reasoning. They obtained system (e) from 
the condition of vanishing of two isochronous constants (computed using (2.3) and (2.4)). Then observing 
that the second equation of the system is θ̇ = 1, they concluded that the system has an isochronous center 
at the origin. However, as we have shown, unless k3 = η2 = 0, the origin of the system is an isochronous 
focus (see e.g. [1,17] for definitions) but not a center.

We note that the conditions for isochronicity of system (1.2) are also given in the survey paper [8]. 
According to Theorem 14.2 of [8] system (1.2) has an isochronous center at the origin if and only if by a 
change of coordinates and rescaling of time it can be brought to one of systems (a), (b), (d) of Theorem 4.1
or to one of systems

ṙ = r2 cos θ + r3(k2 cos 2θ + k3 sin 2θ),
θ̇ = 1 + r sin θ

(4.8)

and

ṙ = r3 cos 2θ,
θ̇ = 1.

(4.9)

However instead of (4.8) and (4.9) we can use just system (c) of the statement of Theorem 4.1, since system 
(4.8) is a particular case of system (c) if we set in (c) k1 = 1 and system (4.9) is a particular case of system 
(c) if we set in (c) k1 = k3 = 0, k2 = 1.

To summarize, in [22] the authors presented four necessary and sufficient conditions for isochronicity of 
the center at the origin of system (1.2), in the case when all parameters of system (1.2) are real. Their 
conditions are correct and coincide with condition (3.1) and conditions (2)–(4) of Theorem 3.1.

In [5] the authors presented five systems, which are systems (a)–(e) of Theorem 4.1 and stated that any 
real system with an isochronous center at the origin can be transformed to one of systems (a)–(e). However, 
as it is shown above, generally speaking system (e) has not a center, but an isochronous focus at the origin 
(see e.g. [1,17] for definitions). So system (e) should not be presented in the statements of Theorem 4.1.
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The five systems presented in [8] are correct, however, as explained above, two of systems of [8] can be 
combined to give system (c) of Theorem 4.1. So there are only four necessary and sufficient conditions for 
isochronicity of the center at the origin of real system (1.2).

In our Theorem 3.1 we presented five conditions for linearizability of complex (1.2). In the case when the 
parameters of (1.2) are real our conditions coincide with those obtained in [22] since for real parameters 
condition (1) of our Theorem 3.1 is equivalent to condition (3.1) and condition (5) is equivalent to the 
condition that all parameters in (1.2) are equal to zero. Thus, our Theorem 3.1 contains all conditions 
for isochronicity of real system (1.2) obtained in [5] and [22], but additionally it gives also conditions for 
linearizability of complex system (1.2).

5. Coexistence of isochronous centers

In this section we present our study on existence of few isochronous centers in real system (1.2).

Theorem 5.1. System (1.2) has at most two isochronous centers including the origin when all parameters 
are real. More precisely, under condition (3.1) and conditions (2), (3) and (4) of Theorem 3.1, system (1.2)
has at most two, one, two and two isochronous centers, respectively.

Proof. We first consider the simplest case, case (2) of Theorem 3.1. In this situation, system (1.2) has 
the form (3.6). From the first equation of (3.6), we know that the coordinates of equilibria must satisfy 
b20x + 1 = 0 or a20x

2 − b20xy − y = 0. Substituting y = a20x
2/(1 + b20x) into the right hand side of 

the second equation of (3.6) we obtain 4a2
20x

2 + (b20x + 1)2 = 0. Then, we get x = 0 or x = −1/b20. 
On the other hand, substituting x = −1/b20 into the right hand side of the second equation of (3.6), we 
have −3a20y/b20 = 0. Thus, other than the origin O : (0, 0) we get the equilibrium A : (−1/b20, 0) when 
a20b20 �= 0, no equilibria exist when b20 = 0 and a20 �= 0, or the line x = −1/b20 is filled by equilibria when 
a20 = 0 and b20 �= 0.

Computing the determinant of linear matrix for system (3.6) at the equilibrium A : (−1/b20, 0), we find 
that it is equal to −3a2

20/b
2
20 < 0, indicating that the equilibrium A is a saddle if it exists. Clearly, any 

equilibrium on the line x = −1/b20 cannot be an isochronous center when a20 = 0. Therefore, in the case 
(2) of Theorem 3.1, system (1.2) has only one isochronous center at the origin.

Consider now case (3) of Theorem 3.1. In this case system (1.2) can be written as

ẋ = (b20x + 1)(4b11x2 − b11y
2 − 2b20xy − 2y)/2 := P3(x, y),

ẏ = x + b20x
2 + b11xy − b20y

2 − (b11b20/2)y3 − b220xy
2 + 2yb11b20x2 := Q3(x, y).

(5.1)

From the first equation of (5.1) we see that the coordinates of equilibria must satisfy b20x + 1 = 0 or 
g3(x, y) := 4b11x2 − b11y

2 − 2b20xy− 2y = 0. Substituting x = −1/b20 into the right hand side of the second 
equation of (5.1), we have −yb11(b220y2 − 2)/b20 = 0. Thus, we find three equilibria A : (−1/b20, 0) and 
A± : (−1/b20, ±

√
2/b20) if b20 �= 0.

If we solve g3(x, y) = 0 and substitute the solution into the right hand side of the second equation of (5.1)
a very complicated expression arises. However, we only need to find the coordinates of centers for system 
(5.1) and at a center the trace of linear matrix is zero. We calculate

T3(x, y) := ∂P3

∂x
+ ∂Q3

∂y

= b20(4b11x2 − b11y
2 − 2b20xy − 2y)/2 + (b20x + 1)(8b11x− 2b20y)/2

+ b11x− 2b20y − (3/2)b11b20y2 − 2b220xy + 2b11b20x2,
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D3(x, y) := ∂P3

∂x

∂Q3

∂y
− ∂P3

∂y

∂Q3

∂x

= (b20(4b11x2 − b11y
2 − 2b20xy − 2y)/2 + (b20x + 1))(8b11x− 2b20y)/2)

(b11x− 2b20y − (3/2)b11b20y2 − 2b220xy + 2b11b20x2)

− (b20x + 1)(−2b11y − 2b20x− 2)(4b11b20xy − b220y
2 + b11y + 2b20x + 1)/2.

Computing a Groebner basis of the ideal 〈g3, Q3, T3〉 we got the basis

G3 := {b20x2 + x, b11y
2 + 2b20xy + 2y, b11x}.

When b11 = 0 we obtain the equilibrium O : (0, 0) or the line b20x +1 is filled with equilibria. When b11 �= 0, 
we obtain the equilibrium B : (0, −2/b11).

Notice that all equilibria on the line b20x + 1 are degenerate when b11 = 0, because the determinant of 
linear matrix at each equilibrium is zero. Thus, an equilibrium on the line b20x + 1 cannot be isochronous 
centers when b11 = 0. By calculations, among all equilibria A : (−1/b20, 0), A± : (−1/b20, ±

√
2/b20) and 

B : (0, −2/b11), only at B the trace of linear part is zero and the determinant of linear part is positive 
at the same time. So we only need to check the isochronicity of equilibrium B : (0, −2/b11). Moving the 
equilibrium B to the origin and making the change

u =
√

2(−2b20/b11))x−
√

2y, v =
√

2x

together with the time scaling dt = −dτ , we obtain from (5.1) the system

ẋ = −y −
√

2b11
2 xy +

√
2b20
2 x2 −

√
2b20
2 y2 + b11b20

4 x3 − xb11b20y
2 + b220

2 x2y,

ẏ = x +
√

2b11
4 x2 +

√
2b20xy −

√
2b11y2 + b11b20

4 x2y + b220
2 xy2 − b11b20y

3,

(5.2)

where we still write x, y instead of u, v. It is easy to show that system (5.2) is Darboux linearizable. 
Therefore, the system has isochronous centers at the origin and at the point B : (0, −2/b11) if b11 �= 0.

Now consider case (4) of Theorem 3.1. In this case system (1.2) has the form

ẋ = −y + a20x
2 − 2b20xy + a20b20x

3 + r11x
2y := P4(x, y),

ẏ = x + a20xy + b20x
2 − b20y

2 + a20b20x
2y + r11xy

2 := Q4(x, y).
(5.3)

It is difficult to find the coordinates of equilibria of system (5.3) explicitly. However, we can calculate

T4(x, y) := ∂P4

∂x
+ ∂Q4

∂y
,

D4(x, y) := ∂P4

∂x

∂Q4

∂y
− ∂P4

∂y

∂Q4

∂x

to find only coordinates of centers. Computing a Groebner basis of 〈P4, Q4, T4〉 we obtained

G4 := {a20xy + 4b20x2 + 4x, a20y
2 + 4b20xy + 4y, −3a3

20x + 16a20b
2
20x + 16a20r11x,

a20x
2 − 4b20xy − 4y, −3a2

20y + 16b220y + 16r11y, b20x
3 + b20xy

2 + x2 + y2,

64b3 x2 + 16b r x2 − 3a2 x− 12a b y + 64b2 x + 16r x}.
20 20 11 20 20 20 20 11
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Letting the first and the second polynomials in G4 be zeros, we get y = −4(b20x + 1)/a20 when a20 �= 0 or 
x = y = 0. Substituting y = −4(b20x + 1)/a20 into G4, we have

{4(b20x + 1)(3a2
20 − 16b220 − 16r11)/a20, (16 + (a2

20 + 16b220)x2 + 32b20x)/a20,

(16 + (a2
20 + 16b220)x2 + 32b20x)(b20x + 1)/a2

20,−a20x(3a2
20 − 16b220 − 16r11),

(64b320 + 16b20r11)x2 + (−3a2
20 + 112b220 + 16r11)x + 48b20}.

(5.4)

Using the first polynomial in (5.4), we obtain b20x + 1 = 0, y = 0 or y = −4(b20x + 1)/a20, 3a2
20 − 16b220 −

16r11 = 0. Substituting them in (5.4), we obtain

{(b20x + 1)x2, a20x
2, 4x(b20x + 1),−x(−64b320x− 16b20r11x + 3a2

20 − 64b220 − 16r11),

−a20x(3a2
20 − 16b220 − 16r11)}

and

{(a2
20x

2 + (4b20x + 4)2)/a20, (b20x + 1)(a2
20x

2 + 16b220x2 + 32b20x + 16)/a2
20,

3b20(a2
20x

2 + 16b220x2 + 32b20x + 16)},

respectively. From the first and the second polynomials in above two sets, we see that on the line y =
−4(b20x + 1)/a20 no center type equilibria exist when a20 �= 0.

When a20 = 0, the basis G4 becomes {b20x2 +x, b20xy+ y, b220y+ r11y}, and we obtain that b20x +1 = 0, 
(b220 + r11)y = 0 or x = 0, y = 0. When a20 = 0, b20x + 1 = 0 and b220 + r11 = 0, the line b20x + 1 = 0 is 
full of equilibria, none of which can be an isochronous center of system (5.3). Hence, we only get the unique 
possible center A : (−1/b20, 0) if a20 = 0, at which the trace of the linear matrix for system (5.3) is zero 
and the determinant is r11/b220 + 1. If a20 = 0, after moving the origin to the point (−1/(2b20), 0), system 
(5.3) is changed into

ẋ = r11
4b220

y − 2b220 + r11
b20

xy + r11x
2y,

ẏ = − 1
4b20

+ b20x
2 − 2b220 + r11

2b20
y2 + r11xy

2,

(5.5)

which is symmetric with respect to the x-axis. Moreover, equilibria (±1/(2b20), 0) of system (5.5) correspond 
to equilibria A and O of system (5.3) respectively. Thus, except of the origin O : (0, 0) we get another 
isochronous center at the equilibrium A : (−1/b20, 0) when a20 = 0, r11/b220 + 1 > 0 and b20 �= 0. Therefore, 
in case (4) system (1.2) has at most two isochronous centers.

At last, we study the case when condition (3.1) is fulfilled. In this situation let the vector field of system 
(1.2) be (P1(x, y), Q1(x, y)), as shown in (4.1). Similarly to case (4), we only consider equilibria of center 
type avoiding complicated calculations of coordinates of all equilibria. We calculate

T1(x, y) := ∂P1

∂x
+ ∂Q1

∂y
,

D1(x, y) := ∂P1

∂x

∂Q1

∂y
− ∂P1

∂y

∂Q1

∂x

to find coordinates of centers. The Groebner basis of 〈P1, Q1, T1〉 is
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G1 := {a20y + b20x + 1, r11xy + r20x
2 − r20y

2 + a20x− b20y, a20r11y
2 + a20r20xy

+ b20r20y
2 + a2

20y + b220y + r11y + r20x + a20}.

If a20 = b20 = 0, system (4.1) cannot have other centers except of the origin. Without loss of generality we 
suppose b20 �= 0. If a20 �= 0 the discussion is similar and we only need to make the change (x, y) → (y, x)
with the time rescaling dt = −dτ . From the first polynomial in G1, we get x = −(a20y+1)/b20. Substituting 
it into G1, we have

g1 := a0 + a1y + a2y
2 = 0, (5.6)

where a0 = a20b20 − r20, a1 = a2
20b20 + b320 − 2a20r20 + b20r11 and a2 = −a2

20r20 + a20b20r11 + b220r20. 
Thus, from (5.6) we find two roots y± = (−a1 ±

√
a2
1 − 4a2a0)/(2a2) and then get two equilibria C± :

(−(a20y± + 1)/b20, y±) when d0 := a2
1 − 4a2a0 > 0 and a2 �= 0. At C± the trace of linear matrix for system 

(4.1) is zero and the determinant of that is

D̃± := d0(∓(a2
20 + b220)

√
d0 − b20(d0/b

2
20 − b220r11 + 4a20b20r20 + a2

20r11 − r2
11 − 4r2

20))
2b320(a2

20r20 − a20b20r11 − b220r20)2
.

Moreover,

D̃+D̃− = − d2
0

b420(a2
20r20 − a20b20r11 − b220r20)2

< 0,

implying that at most one of C+ and C− is a center. Actually, when r20 = a20b20, we find that the equilibrium 
B : (0, −2/b11) is an isochronous center, since it is easy to show that system (4.1) is Darboux linearizable 
at this point. Therefore, if (3.1) holds, then system (1.2) has at most two isochronous centers. �

To conclude, we have found conditions for isochronicity and linearizability of system (1.2) and clarified 
conditions of isochronicity obtained by Chavarriga et al. in [5]. An important feature of our approach is the 
treatment of coefficients of system (1.2) as complex parameters, since this has allowed us to use formula 
(3.2) for finding the decomposition of the integrability variety and to use the Radical Membership Test in 
order to check the correctness of computations involved modular arithmetic.
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