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Abstract

In this course I will review some recent development in the field of Quan-
tum Chaos, in particular in the connection to the emerging fields of Quantum
Computation and Quantum Information.

I will start by defining some basic notions of Quantum Chaos in the
time domain, together with some quantitative measures which characterize
the complexity and stability of the quantum and underlying classical mo-
tion: dynamical entropies, Lyapunov exponents, fidelity and more general
Loschmidt echoes.

Then I will continue with introducing the basic concepts of quantum
information, and presenting the basic results, such as no-cloning theorem
and the principle of quantum teleportation. I will discuss the statement
of universal quantum computation and give examples of efficient quantum
algorithms, such as quantum teleportation, quantum Fourier transformation
and Grover search algorithm.

In the last part of the course I will show how understanding of stability
of quantum dynamical systems can help in constructing more stable quan-
tum algorithms, e.g. running efficient and stable quantum simulation of
dynamical systems on imperfect devices. I will also discuss several candidate
technologies for building a real-world quantum computer and the present
state of affairs.
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Lecture 1:

Quantum chaos in time domain and phase-

space representation of quantum mechanics

In this introductory lecture I will discuss some basic definitions and principles
in quantum chaos [1, 2], in particular in the time domain where dynamical
chaos and complexity can directly be discussed.

I will show that the question whether genuine chaos exists in quantum
dynamics of small bounded systems boils down to the interplay of timescales,
in particular the so-called Heisenberg time or break time and the Ehrenfest
time [3, 4]. These time-scales will be defined precisely and discussed in
various situations. In order to facilitate this and later discussions I will
review some phase-space formalisms of quantum mechanics, such as Wigner-
Weyl picture and Moyal equation [5], (squeezed) coherent states and Husimi
functions.

Lecture 2:

Measures of stability and complexity in classi-

cal and quantum dynamics

In the second lecture I will define and discuss basic measures of stability
and complexity of classical and quantum dynamical systems. For classi-
cal dynamical systems I will consider the spectrum of Lyapunov exponents
[6, 7], the Ruelle spectrum of Perron-Frobenius operator [7]), the classical
Loschmidt echo or stability against systems’ perturbations [9], and the dy-
namical entropies closely related to the algorithmic complexity [7]. I will
classify different possible behaviors and present examples of each class.

Then I will consider the corresponding properties of quantum dynamical
systems with examples [8, 1, 10, 11, 12]. In particular it is worth stressing that
the correspondence between classical and quantum behaviors, which should
hold for sufficiently small times, is typically broken for longer times, i.e.
times longer than the so-called break times. Two most drastic effects in this
respect, which will be explained in the lecture, are the quantum dynamical
localization [3], and stability of quantum echoes against perturbations [10,
11].
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Lecture 3:

Quantum information — basic facts

In the third lecture I will define quantum information, the notion of a qubit,
and coding of quantum information. Then we shall review basic facts and
theorems concerning quantum information [13, 14, 15]. For example, we
shall demonstrate the quantum no-cloning theorem which forbids copying of
quantum information. We shall also define quantitative measures of entan-
glement and show how entanglement can be used as a resource in quantum
information processing.

In the second part of this lecture I will disuss the principal requirements
for making a universal quantum information processor (the so-called DiV-
inzenco’s criteria) and describe some basic technologies [13, 14, 15] which
seem promising candidates for building a real-world quantum computer. For
example: ion traps, solid state devices, photonics, Josephson junction arrays,
etc. By listing some recent advances in experiments I will try to present the
state of the art.

Lecture 4:

Universal quantum computation and efficient

quantum algorithms — examples

In the fourth lecture we shall discuss the principles of universal quantum
computation [13, 14, 15]. We shall write a simple small set of universal
gates, such as Hadamard gate, Pauli gates, as examples of one-qubit gates,
and controlled not gate as an example of two qubit gate.

Then we shall outline some examples of efficient quantum algorithms
which process certain tasks sometimes even exponentially faster (in the num-
ber of qubits) than any classical algorithm. In particular, we shall discuss
quantum protocol for performing quantum teleportation, that is a transport
of an unknown quantum state through an array of qubits. Then we shall dis-
cuss quantum Fourier transform which is an efficient quantum algorithm to
perform discrete Fourier transformation. This algorithm is at the heart of the
most famous to-date application of quantum computing: Schor’s algorithm
[16] for fast factorization of integers. This algorithm has an immense po-
tential application in cryptography, and perhaps it is interesting to mention
that best current prototype quantum-computers are already able to factorize
number 15 = 5 × 3. At last we shall also present the idea of the celebrated
Grover [17] algorithm, which searches for an item in an unstructured list of
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n objects in ∼
√

n computational steps.

Lecture 5:

Quantum computation as a dynamical system

— Can chaos enhance stability or reduce de-

coherence of quantum computation?

In the last lecture we will present some recent developments on the connec-
tion between dynamical systems and quantum computation. In particular,
one can simulate chaotic classical and quantum dynamical systems efficiently
by a quantum computer. I will present an algorithm for simulating quan-
tum kicked rotor efficiently on a quantum computer and for determining the
localization length of a steady state [18].

Then we shall focus on application of recent results on the stability of
dynamical systems against small variation of the Hamiltonian and the decay
of quantum Loschmidt echo in the realm of quantum computation. In par-
ticular I will explain the linear response theory of fidelity which predicts that
faster decay of dynamical correlations reduce fidelity of quantum computa-
tion [11, 19]. At last, if the time permits, we shall also discuss on how similar
ideas can be used in dynamical system’s explanation of decoherence [20], e.g.
in computing the Von Neuman entropy growth in a chaotic or regular system
weakly coupled to an environment.
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