# Absorption in microwave scattering systems 

U. Kuhl and H.-J. Stöckmann<br>Fachbereich Physik, Philipps-Universität Marburg, Renthof 5, D-35032 Marburg, Germany M. Martínez-Mares<br>Departamento de Física, UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D. F., México R.A. Méndez-Sánchez<br>Centro de Ciencias Físicas, Universidad Nacional Autónoma de México, A.P 48-3, 62210, Cuernavaca, Mor., México<br>J. Main<br>Institut für Theoretische Physik und Synergetik, Universität Stuttgart, D-70550 Stuttgart, Germany

We investigate absorption and coupling in chaotic microwave cavities. First we quantify the presence of direct processes in the $S$-matrix of chaotic microwave cavities with absorption in the one-channel case. To this end the full distribution $P_{S}(S)$ of the $S$-matrix, i.e. $S=\sqrt{\bar{R}} e^{i \theta}$, is studied in cavities with time-reversal symmetry for different antenna coupling strengths $T_{a}$ and different wall absorption $T_{w}$. The experimental results are compared with randommatrix calculations and with numerical simulations based on the Heidelberg approach including absorption. The theoretical result is a generalization of the Poisson kernel. The experimental and the numerical distributions are in excellent agreement with random-matrix predictions for all cases $[1,2]$.

Further we investigate the poles of the systems. The poles are extracted from the spectra by means of the method of the harmonic inversion [3]. This methods works also in the regime where the resonances are overlapping. The distribution of the width of the poles is investigated and compared with theoretical prediction from Ref. $[4,5]$.

## References

[1] U. Kuhl, M. Martínez-Mares, R.A. Méndez-Sánchez, and H.-J. Stöckmann. condmat/0407197.
[2] R.A. Méndez-Sánchez, U. Kuhl, M. Barth C.H. Lewenkopf, and H.-J. Stöckmann. Phys. Rev. Lett. 91, 174102 (2003).
[3] J. Main, P.A. Dando, D Belkić, and H.S. Taylor. J. Phys. A 33, 1247 (2000).
[4] Y.V. Fyodorov and H.-J. Sommers. J. Math. Phys. 38, 1918 (1997).
[5] H.J. Sommers, Y.V. Fyodorov, and M. Titov. J. Phys. A 32, L77 (1999).

