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Statistical properties of 1D time-dependent Hamilton systems

Dimitris Andresas, Benjamin Batistić and Marko Robnik

CAMTP - Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Maribor, Slovenia

I shall discuss the general theory of parametrically kicked systems, especially in nonlinear 1D Hamiltonian
systems. I shall present the general Papamikos-Robnik (PR) conjecture for parametrically kicked Hamilton
systems, which says that for such systems the adiabatic invariant (the action) for an initial microcanonical
ensemble at the mean final energy always increases under a parametric kick. I shall also present many examples
of the validity of the PR property, which is almost always satisfied, but can be broken in not sufficiently smooth
potentials or in cases where we are in the energy range close to a separatrix in the phase space. The general
conjecture, using analytical and numerical computations, is shown to hold true for important systems like ho-
mogeneous power law potentials, pendulum, Kepler system, Morse potential, Pöschl-Teller I and II potentials,
cosh potential, quadratic-linear potential, quadratic-quartic potential, while in three cases we demonstrate the
absence of the PR property: Linear oscillator enclosed in a box, sextic potential, quartic double well potential.
We shall discuss the physical relevance of these results.

In the second part of the talk I shall present the results of other kinds of time-dependent systems, namely the
cases of almost adiabatic (almost infinitely slow) variation, the case of unlimited linear driving of homogeneous
power law potentials, where the nonlinear WKB method developed by Papamikos and Robnik (2012) can be
applied, and finally also the cases of periodic driving.
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A hopping model of the energy transport in time-dependent
billiards

Benjamin Batistić

CAMTP - Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Maribor, Slovenia

The energy of a particle in a time-dependent billiard can grow without limit, and under certain conditions the
energy growth can be even exponentially fast in time. Time-dependent billiards are important models in many
physical phenomena, for example, they serve as a model of acceleration of cosmic particles which are colliding
with moving interstellar magnetic domains, as originally proposed by Enrico Fermi. Thus it is important to
understand what are the general conditions that imply the exponentially fast energy growth. I shall explain
the origin of the exponentially fast acceleration introducing the hopping model of the particle dynamics, in
which a trajectory of the particle is represented as a path through an abstract space of invariant components of
corresponding static (frozen) billiards. Such paths, which I call ζ-trajectories, are generated probabilistically in
terms of time-dependent Markov transition matrices. I will show that if the number of ζ-trajectories proliferate
exponentially fast in time, then the average energy of an ensemble grows exponentially in time as well. This
scenario takes place if the phase space of corresponding static billiards is of the mixed type - with coexisting
chaotic and regular domains. I shall also discuss cases in which the acceleration is not exponentially fast but
obeys the power law, and explain the associated acceleration exponents.
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Exactly Solvable Counting Statistics in Open Weakly Coupled Interacting Spin Systems

Berislav Buča and Tomaž Prosen
Department of Physics, FMF, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

We study the full counting statistics for interacting quantum many-body spin systems weakly coupled to the
environment. In the leading order in the system-bath coupling we derive exact spin current statistics for a large
class of parity symmetric spin-1/2 systems driven by a pair of Markovian baths with local coupling operators.
Interestingly, in this class of systems the leading order current statistics are universal and do not depend on
details of the Hamiltonian. Furthermore, in the specific case of symmetrically boundary driven anisotropic
Heisenberg (XXZ) spin 1/2 chain we derive explicitly the third-order non-linear corrections to the current
statistics.
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Degenerate Andronov-Hopf bifurcations in systems of ODE’s

Brigita Ferčec
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In the first part of my talk I will discuss a Hopf (or Andronov-Hopf) bifurcation for planar systems. I will
describe also limit cycles on the center manifold and degenerate Hopf (Bautin) bifurcations. In the second part
of the talk I will present one of the most famous problems in qualitative theory of ordinary differential equations
- Hilbert’s sixteenth problem on the number of limit cycles of two dimensional polynomial systems

ẋ = Pn(x, y), ẏ = Qn(x, y)

(n is the maximum degree of the polynomials on the right-hand side of the system). An essential part of
the problem is the problem of estimating of the maximum number of limit cycles which can bifurcate from
a singular point of center or focus type under small perturbations of coefficients of the system, the so-called
cyclicity problem. The key feature of our approach is that in the case of an elementary singular point the
problem of cyclicity is reduced to the algebraic problem of searching for a basis of a certain polynomial ideal.
We apply this approach for solving the cyclicity problem for a subfamily of cubic systems.
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Existence, dynamics and mobility of Quantum Compactons in an extended Bose-Hubbard model

Peter Jason, Magnus Johansson
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

Lattice Compactons, discrete breathers with compact support, were found for a discrete nonlinear Schrödinger
(DNLS) equation extended with nearest neighbour intersite nonlinearities [1], a model originally studied with
waveguide arrays in mind. These compactons were shown to exhibit very good mobility if the parameters are
tuned close to the compactons stability boundary. The DNLS can also be used to model the behaviour of
Bose-Einstein condensates in optical lattices, and the remarkable control over the experiments in this field of
research has made it possible to study the quantum mechanics of strongly correlated atoms.

We will define the concept of a Quantum Lattice Compacton [2] and discuss the existence and dynamics, with
special emphasis on mobility [3], of these in an extended Bose-Hubbard model corresponding to above-mentioned
extended DNLS equation in the quantum mechanical limit. The compactons is given ’a kick’ by means of a
phase-gradient and it is shown that the size of this phase is crucial for the mobility of the compactons. For small
phase-gradients, corresponding to a slow coherent motion in the classical model, the time-scales of the quantum
tunnelings become of the same order as the time-scale of the translational motion and the classical mobility
is destroyed by quantum fluctuations. For large phase-gradients, corresponding to rapid classical motion, the
classical and quantum time-scales separate so that a mobile, localized coherent quantum state can be translated
many sites in the lattice already for small particle numbers of the order of 10 [3].

Acknowledgements: This project has been financed by the Swedish Research Council.
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On-off intermittency generated by infinite-modal maps

Masaki Nakagawa and Yoji Aizawa
Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, Okubo

3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

On-off intermittency is an irregular switching phenomenon between long-term laminar behavior and instanta-
neous bursts. This phenomenon was discovered by Fujisaka and Yamada [1] in coupled chaotic systems, and
observed in many experimental systems or mathematical models. Conventional mathematical models for on-
off intermittency have been modeled using linear multiplicative noise systems. In such systems, it has been
found that statistical properties such as the following are true at near the transition to transient behaviors
from intermittent behaviors: (i) The stationary distribution about the distance r from the laminar state has
P (r) ∼ r−1 (r � 1) [2], (ii) The laminar duration distribution has ρ(t) ∼ t−3/2 (t � 1) [3]. Since the above
laws was observed from many experimental systems as well as mathematical models, they are regarded as the
standard statistical laws for on-off intermittency.

Recently, in response to experimental examples deviating from such standard statistical laws, a probabilistic
model which can change the exponents, such as−1 or−3/2, of the standard statistical laws by control parameters
is devised [4]. However the deterministic model generating the non-standard statistical laws is not yet known.
In such a situation, we found that the following one-dimensional dynamical system, which is an infinite-modal
map, can generate on-off intermittency chaos:

xn+1 = xn|xn|a−1 sin (b log (1/|xn|)) , −1 ≤ xn ≤ 1. (1)

where a ∈ (0, 1) and b > 0 are parameters. This map originates in the dynamics for near the homoclinic orbit of
the saddle-focus point in ordinary differential equations [5,6]. In this presentation, we present that the essence
for the dynamics of this map is a non-linear multiplicative noise system and that it has non-standard statistical
laws, according to numerical simulations.
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Swarm Dynamics and Lyapunov Analysis

Masashi Shiraishi, Yoji Aizawa
Department of Applied Physics, School of Advanced Science and Engineering, Waseda University,

3-4-1 Okubo, Shinjuku, Tokyo, JAPAN

The swarm dynamics is characterized by many local and global modes in the collective motions. The global
response in the group dynamics is sensitively affected by the local aspects and also the local behaviors are
controlled by the global information. The local-global linkage in the swarm dynamics is an essential mechanism,
which leads to self-organization of the unified behavior in the swarm dynamics. In this paper, we consider a
simple model to understand the linkage between local and global effects in the group dynamics by taking into
account the local communicative interactions as well as the global environmental effects.

We propose the minimal model of active matters, where two parameters play the essential role in the group
behavior: one is the environmental effect from the outside of the swarm, and the other is the communicative
effect among individuals inside of swarm. The velocity of the i-matter is described by the following dynamics;

v̇i(t) =
(
1− |vi(t)|2

)
vi(t) + Fcomm(t) + Fgoal(t) + Fenv(t) (2)

For the sake of simplicity, the attractive effect of the goal information is shown by Fgoal(t), the environmental
effect from outside by Fenv(t), and the communicative competence among individuals by Fcomm(t). The first
term is also a simplified form of the self-controlling effect to each velocity.

The Lyapunov exponents, which describe the sensitivity in the motion of each individual, is used to understand
the global and local behaviors of the swarm dynamics. Increasing the size of the swarm, the exponents also
increase. It will be discussed that the Lyapunov exponents (spectrum) affect the swarm dynamics of our model
sensitively and the relation between the collective states and the instability. Detailed aspects of the Lyapunov
exponents in the swarm dynamics are discussed in comparison with other chaotic dynamics of many-body
systems.
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Anomalous transport processes of inertial Brownian particles induced by white Poissonian noise

Jakub Spiechowicz1, Jerzy  Luczka1 and Peter Hänggi2
1 Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

2 Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

Absolute negative mobility (ANM) is counterintuitive phenomenon: particles move in a direction opposite
to a static bias force. It seems to be in contradiction to the Newton equation motion, the second law of
thermodynamics and observation of motion at a macroscopic scale. However, under non-equilibrium conditions,
there is no fundamental principle which excludes ANM. What are essential ingredients for the occurrence of
ANM? The minimal model can be formulated in terms of one-dimensional Newton equation for a Brownian
particle moving in a symmetric spatially periodic potential, driven by unbiased harmonic force and biased by a
static force F [1]. The ANM response in a symmetric periodic potential is so that an average particle velocity
〈v(F )〉 obeys the relation 〈v(F )〉 = −〈v(−F )〉, which follows from the symmetry arguments. In particular
〈v(0)〉 = 0. So, for F = 0 there is no directed transport in the long time regime. The non-zero static force F
breaks the symmetry and therefore induces a directed motion of particles. In the lecture, we replace the static
force F by a random force η(t) of a time-independent non-zero mean value 〈η(t)〉 = η0 [2]. We assume that the
particle is coupled to its environment (thermostat) of temperature T and thermal fluctuations ξ(t) are included
as well. As an example of the random force η(t), we consider non-equilibrium Poissonian white shot noise, which
is composed of a random sequence of δ-shaped pulses with random amplitudes. We analyse the dependence of
the long-time average velocity 〈v〉 on parameters of both random forces η(t) and ξ(t). We find a rich variety
of anomalous transport regimes including the absolute negative mobility around zero biasing Poissonian noise,
the emergence of a negative differential mobility and the occurrence of a negative nonlinear mobility (for values
of bias η0 far from zero). As a feasible physical system, we propound a setup consisting of a single resistively
and capacitively shunted Josephson junction driven by both a time periodic current and a noisy current. In
this case the phase difference between the macroscopic wave functions of the Cooper electrons in both sides of
the junction translates to the Brownian particle coordinate and the voltage across the junction translates to
the particle velocity. For such a system, the anomalous transport characteristics can be measured, thus putting
our predictions to a reality check.
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