Random Matrices, Quantum Chaos and Open Quantum Systems

Karol Życzkowski

in collaboration with

W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński

Institute of Physics, Jagiellonian University, Cracow, Poland Center for Theoretical Physics, Polish Academy of Sciences

Maribor, Slovenia July 7, 2008

Pure states in a finite dimensional Hilbert space \mathcal{H}_N

Qubit = quantum bit;
$$N = 2$$

$$|\psi
angle = \cosrac{artheta}{2}|1
angle + e^{i\phi}\sinrac{artheta}{2}|0
angle$$

Bloch sphere of N = 2 pure states

Space of pure states for an arbitrary N:

a complex projective space $\mathbb{C}P^{N-1}$ of 2N-2 real dimensions.

Unitary evolution

Fubini-Study distance in $\mathbb{C}P^{N-1}$

$$D_{FS}(|\psi
angle,|arphi
angle) \ := \ \operatorname{arccos}|\langle\psi|arphi
angle|$$

Unitary evolution

Let $U = \exp(iHt)$. Then $|\psi'\rangle = U|\psi\rangle$.

Since $|\langle\psi|\varphi\rangle|^2=|\langle\psi|U^\dagger U|\varphi\rangle|^2$ any unitary evolution is a rotation in $\mathbb{C}P^{N-1}$

hence it is an isometry (with respect to any standard distance !)

Classical limit: what happend for large N?

How an isometry may lead to classically chaotic dynamics?

The limits $t \to \infty$ and $N \to \infty$ do not commute.

Closed systems, Unitary Dynamics & Quantum Chaos

'Quantum chaology': analogues of classically chaotic systems

Quantum analogues of classically chaotic dynamical systems can be described by random matrices

- a). autonomous systems Hamiltonians:
 - Gaussian ensembles of random Hermitian matrices, (GOE, GUE, GSE)
- b). periodic systems evolution operators:

Dyson circular ensembles of random unitary matrices, (COE, CUE, CSE)

Universality classes

Depending on the symmetry properties of the system one uses ensembles form orthogonal ($\beta=1$); unitary ($\beta=2$) and symplectic ($\beta=4$) ensembles.

The exponent β determines the level repulsion, $P(s) \sim s^{\beta}$ for $s \to 0$ where s stands for the (normalised) level spacing, $s_i = \phi_{i+1} - \phi_i$.

see e.g. F. Haake, Quantum Signatures of Chaos

Interacting Systems & Mixed Quantum States

Set \mathcal{M}_N of all mixed states of size N

$$\mathcal{M}_{N}:=\{
ho:\mathcal{H}_{N}
ightarrow\mathcal{H}_{N};
ho=
ho^{\dagger},
ho\geq0,\mathrm{Tr}
ho=1\}$$

example: $\mathcal{M}_2 = \mathcal{B}_3 \subset \mathbb{R}^3$ - Bloch ball with all pure states at the boundary

The set \mathcal{M}_N is compact and convex:

$$ho = \sum_i a_i |\psi_i\rangle \langle \psi_i|$$
 where $a_i \geq 0$ and $\sum_i a_i = 1$. It has $N^2 - 1$ real dimensions, $\mathcal{M}_N \subset \mathbb{R}^{N^2 - 1}$.

How the set of all N=3 mixed states looks like?

An 8 dimensional convex set with only 4 dimensional subset of pure (extremal) states, which belong to its 7-dim boundary

Quantum maps

Quantum operation: linear, completely positive trace preserving map

 $\Phi: \mathcal{M}_2 \rightarrow \mathcal{M}_2$

positivity: $\Phi(
ho) \geq 0$, $orall
ho \in \mathcal{M}_{\mathit{N}}$

complete positivity: $[\Phi \otimes \mathbb{1}_K](\sigma) \geq 0$, $\forall \sigma \in \mathcal{M}_{KN}$ and K = 2, 3, ...

Environmental form (open system!)

$$\rho' = \Phi(\rho) = \operatorname{Tr}_{E}[U(\rho \otimes \omega_{E}) U^{\dagger}].$$

where ω_E is an initial state of the environment while $UU^\dagger=\mathbb{1}$.

Kraus form

 $\rho' = \Phi(\rho) = \sum_i A_i \rho A_i^{\dagger}$, where the Kraus operators satisfy $\sum_i A_i^{\dagger} A_i = \mathbb{1}$, which implies that the trace is preserved.

Classical probabilistic dynamics & Markov chains

Stochastic matrices

Classical states: *N*-point probability distribution, $\mathbf{p} = \{p_1, \dots p_N\}$, where $p_i \geq 0$ and $\sum_{i=1}^{N} p_i = 1$

Discrete dynamics: $p_i' = S_{ij}p_j$, where S is a stochastic matrix of size N and maps the simplex of classical states into itself, $S: \Delta_{N-1} \to \Delta_{N-1}$.

Frobenius-Perron theorem

Let S be a stochastic matrix:

- a) $S_{ij} \ge 0$ for i, j = 1, ..., N,
- b) $\sum_{i=1}^{N} S_{ij} = 1$ for all j = 1, ..., N.

Then

- i) the spectrum $\{z_i\}_{i=1}^N$ of S belongs to the unit disk,
- ii) the leading eigenvalue equals unity, $z_1 = 1$,
- iii) the corresponding eigenstate ${f p}_{
 m inv}$ is invariant, $S{f p}_{
 m inv}={f p}_{
 m inv}$.

| ←□ ▶ ←□ ▶ ← 亘 ▶ ○ 亘 | 夕 へ (

Quantum stochastic maps (trace preserving, CP maps)

Superoperator $\Phi: \mathcal{M}_N \to \mathcal{M}_N$

A quantum operation can be described by a matrix Φ of size N^2 ,

$$\rho' = \Phi \rho$$
 or $\rho'_{m\mu} = \Phi_{\substack{m\mu \\ n\nu}} \rho_{n\nu}$.

The superoperator Φ can be expressed in terms of the Kraus operators A_i , $\Phi = \sum_i A_i \otimes \bar{A}_i$.

Dynamical Matrix D: Sudarshan et al. (1961)

obtained by *reshuffling* of a 4-index matrix Φ is Hermitian,

$$D_{\underline{m}\underline{n}} := \Phi_{\underline{m}\underline{\mu}}, \quad \text{so that} \quad D_{\Phi} = D_{\Phi}^{\dagger} =: \Phi^{R}.$$

Theorem of Choi (1975). A map Φ is completely positive (CP) if and only if the dynamical matrix D is positive, $D \ge 0$.

Spectral properties of a superoperator Φ

Quantum analogue of the Frobenious-Perron theorem

Let Φ represent a stochastic quantum map, i.e.

a') $\Phi^R \ge 0$; (Choi theorem)

b')
$$\operatorname{Tr}_A \Phi^R = \mathbb{1} \iff \sum_k \Phi_{kk} = \delta_{ij}$$
. (trace preserving condition)

Then

- i') the spectrum $\{z_i\}_{i=1}^{N^2}$ of Φ belongs to the unit disk,
- ii') the leading eigenvalue equals unity, $z_1 = 1$,
- iii') the corresponding eigenstate (with N^2 components) forms a matrix ω of size N, which is positive, $\omega \geq 0$, normalized, ${\rm Tr}\omega = 1$, and is invariant under the action of the map, $\Phi(\omega) = \omega$.

Classical case

In the case of a diagonal dynamical matrix, $D_{ij}=d_i\delta_{ij}$ reshaping its diagonal $\{d_i\}$ of length N^2 one obtains a matrix of size N, where $S_{ij}=D_{ii}$, of size N which is stochastic and recovers the standard F-P theorem.

Exemplary spectra of (typical) superoperators

Spectra of several random superoperators Φ for a) N=2 and b) N=3 contain:

- i) the leading eigenvalue $z_1=1$ corresponding to the invariant state $\omega,$
- ii) real eigenvalues,
- iii) complex eigenvalues inside the disk of radius $r=|z_2|\leq 1$.

Random (classical) stochastic matrices

Ginibre ensemble of complex matrices

Square matrix of size N, all elements of which are independent random complex Gaussian variables.

An algorithm to generate S at random:

- 1) take a matrix X form the complex Ginibre ensemble
- 2) define the matrix S,

$$S_{ij} := |X_{ij}|^2 / \sum_{i=1}^N |X_{ij}|^2$$
,

which is stochastic by construction:

each of its columns forms an independent random vector distributed uniformly in the probability simplex Δ_{N-1} .

Random quantum states

How to generate a mixed quantum state at random?

- 1) Fix $M \ge 1$ and take a $N \times M$ random complex Ginibre matrix X;
- 2) Write down the positive matrix $Y := XX^{\dagger}$,
- 3) Renormalize it to get a random state ρ ,

$$\rho \ := \ \frac{Y}{{\rm Tr}\, Y} \ .$$

This matrix is positive, $\rho \geq 0$ and normalised, ${\rm Tr} \rho = 1$, so it represents a quantum state!

Special case of M = N (square Ginibre matrices)

Then random states are distributed uniformly with respect to the Hilbert-Schmidt (flat) measure,

e.g. for $M={\it N}=2$ random mixed states cover uniformly the interior of the Bloch ball.

Random (quantum) stochastic maps

An algorithm to generate Φ at random:

- 1) Fix $M \ge 1$ and take a $N^2 \times M$ random complex Ginibre matrix X;
- 2) Find the positive matrix $Y := \operatorname{Tr}_A XX^{\dagger}$ and its square root \sqrt{Y} ;
- 3) Write the dynamical matrix (Choi matrix)

$$D = (\mathbb{1}_N \otimes \frac{1}{\sqrt{Y}}) X X^{\dagger} (\mathbb{1}_N \otimes \frac{1}{\sqrt{Y}}) ;$$

4) Reshuffle the Choi matrix to obtain the superoperator $\Phi=D^R$ and use to produce a random map, $\rho'_{m\mu}=\Phi_{m\nu}^{\mu}\rho_{n\nu}$.

Map Φ obtained in this way is stochastic! i.e. Φ is completely positive and trace preserving

Random stochastic maps II

Probability distribution for random maps

$$P(D) \propto \det(D^{M-N^2}) \delta(\operatorname{Tr}_{\mathbf{A}} D - 1)$$
,

In the special case $M=N^2$ the determinant vanishes, so there are other constraints on the distribution of the random Choi matrix D, besides the partial trace relation, $\operatorname{Tr}_A D=\mathbb{1}$.

Interaction with M-dim. environment

- 1') Chose a random unitary matrix U according to the Haar measure on U(NM)
- 2') Construct a random map defining

$$\rho' = \operatorname{Tr}_{M}[U(\rho \otimes |\nu\rangle\langle\nu|)U^{\dagger}],$$

where $|\nu\rangle\in\mathcal{H}_M$ is an arbitrary (fixed) state of the environment.

◆□▶◆圖▶◆圖▶◆圖▶ ■ 釣魚

Bloch vector representation of any state ρ

$$\rho = \sum_{i=0}^{N^2-1} \tau_i \; \lambda^i$$

where λ' are generators of SU(N) such that $\operatorname{tr}\left(\lambda^i\lambda^j\right)=\delta^{ij}$ and $\lambda^0=\mathbb{1}/\sqrt{N}$ and τ_i are expansion coefficients. Since $\rho=\rho^\dagger$, the generalized Bloch vector $\overrightarrow{\tau}=[\tau_0,\ldots,\tau_{N^2-1}]$ is real.

Stochastic map Φ in the Bloch representation

The action of the map Φ can be represented as

$$\tau' = \Phi(\tau) = C\tau + \kappa,$$

where C is a real, asymmetric contraction matrix of size N^2-1 while κ is a translation vector. Thus $\Phi=\begin{bmatrix}1&0\\\kappa&C\end{bmatrix}$ and the eigenvalues of C are also eigenvalues of Φ .

Random maps & random matrices

Full rank, symmetric case $M = N^2$

For large N the measure for C can be described by the real Ginibre ensemble of non-hermitian Gaussian matrices.

Spectral density in the unit disk

The spectrum of Φ consists of:

- i) the leading eigenvalue $z_1 = 1$,
- ii) the component at the real axis, the distribution of which is asymptotically given by the step function $P(x) = \frac{1}{2}\Theta(x-1)\Theta(1-x)$,
- iii) complex eigenvalues, which cover the disk of radius $r=|z_2|\leq 1$ uniformly according to the Girko distribution.

Subleading eigenvalue $r = |z_2|$

The radius r is determined by the trace condition: Since the avearge $\langle {\rm Tr} D^2 \rangle = \langle {\rm Tr} \Phi \Phi^\dagger \rangle \approx {\rm const}$ then $r \sim 1/N$ so the spectrum of the rescaled matrix $\Phi' := N\Phi$ covers the entire unit disk.

Spectral density for random stochastic maps

Numerical results

- a) Distribution of complex eigenvalues of 10^4 rescaled random operators $\Phi'=N\Phi$ already for N=10 can be approximated by the circle law of Girko.
- b) Distribution of real eigenvalues P(x) of Φ' plotted for N=2,3,7 and 14 tends to the step function!

Convergence to equilibrium and decoherence rate

Average trace distance to invariant state $\omega = \Phi(\omega)$

 $L(t) = \langle \text{Tr} | \Phi^t(\rho_0) - \omega | \rangle_{\psi}$, where the average is performed over an ensemble of initially pure random states, $\rho_0 = |\psi\rangle\langle\psi|$. Numerical result confirm an exponential convergence, $L(t) \sim \exp(-\alpha t)$.

- a) Average trace distance of random pure states to the invariant state of Φ as a function of time for $N=4(\bullet), \quad 6(\blacksquare), \quad 8(\star).$
- b) mean convergence rate $\langle \alpha \rangle_\Phi$ scales as In N with the system size N.

Comparison with a quantum dynamical system

Generalized quantum baker map with measurements

a) Standard quantisation of Balazs and Voros $B=F_N^\dagger\begin{bmatrix}F_{N/2}&0\\0&F_{N/2}\end{bmatrix}$, where F_N denotes the Fourier matrix of size N. Then $\rho'=B\rho_iB^\dagger$ b) M measurement operators projecting into orthogonal subspaces $\rho_{i+1}=\sum_{i=1}^M P_i\rho'P_i$

Numerical spectra of superoperator of baker map for N=64, a) M=2, b) M=8 (master thesis of M. Smaczyński, in preparation).

Concluding Remarks

- Quantum Chaos:
 - a) in case of closed systems one studies unitary evolution operators and characterizes their spectral properties,
 - b) for open, interacting systems one analyzes non-unitary time evolution described by quantum stochastic maps.
- We analyzed spectral properties of quantum stochastic maps and formulated a quantum analogue of the Frobenius-Perron theorem.
- A natural flat measure in the space of quantum operations (stochastic maps) is defined and an algorithm to produce them at random is given.
- For large *N* random quantum operations can be described by random matrices of the real Ginibre ensemble.
- Sequential action of a fixed random map brings all pure states to the invariant state exponentially fast. The convergence rate scales logarithmically with the system size N.