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Pure states in a finite dimensional Hilbert space Hy

Qubit = antum =2

|1/)> = cos §|1) + €'”sin 210)

Bloch sphere of N = 2 pure states

Space of pure states for an arbitrary N:

a complex projective space CPY=1 of 2N — 2 real dimensions.
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Unitary evolution

Fubini-Study distance in CPV~!

Des(|1), lg)) = arccos [(4])]

Unitary evolution

Let U = exp(iHt). Then |[¢') = U|3).
Since |(¥|©)|? = |(4|UTU|p)|? any unitary evolution is a rotation in
CcpN-1

hence it is an isometry (with respect to any standard distance !)

Classical limit: what happend for large N7

How an isometry may lead to classically chaotic dynamics?
The limits t — co and N — oo do not commute.
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Closed systems, Unitary Dynamics & Quantum Chaos

'Quantum chaology’: analogues of classically chaotic systems

Quantum analogues of classically chaotic dynamical systems can be
described by random matrices
a). autonomous systems — Hamiltonians:

Gaussian ensembles of random Hermitian matrices, (GOE, GUE, GSE)
b). periodic systems — evolution operators:

Dyson circular ensembles of random unitary matrices, (COE, CUE, CSE)/

Universality classes

Depending on the symmetry properties of the system one uses ensembles
form orthogonal (8 = 1); unitary (8 = 2) and symplectic (8 = 4)
ensembles.

The exponent (3 determines the level repulsion, P(s) ~ s? for s — 0 where
s stands for the (normalised) level spacing, s; = ¢i+1 — ¢;.

see e.g. F. Haake, Quantum Signatures of Chaos
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Interacting Systems & Mixed Quantum States

Set M, of all mixed states of size IV

Mp:={p:Hn = Hn;ip=p',p>0,Trp =1}
example: My = B3 C R3 - Bloch ball with all pure states at the boundary

The set M is compact and convex:

p = Zi a,-|v,b,-)<v,[z,-| where a3; > 0and ) ;a; = 1.

It has N2 — 1 real dimensions, My C RV*~1,

How the set of all N = 3 mixed states looks like?

An 8 dimensional convex set with only 4 dimensional subset of pure
(extremal) states, which belong to its 7-dim boundary
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Quantum operation: linear, completely positive trace preserving map

DM, M, positivity: ®(p) >0, Vpe€ My
complete positivity: [® ® 1x](c) >0, Vo€ Mgy and K =2,3,...

| A\

Enviromental form (open system !)

o= 0(p) = Tre[U (p @ wg) U'.

where wg is an initial state of the environment while UU' = 1.

| \

Kraus form

pP=d(p)=>: A,-pA}L, where the Kraus operators satisfy
Zl-A:.fA,- = 1, which implies that the trace is preserved.
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Classical probabilistic dynamics & Markov chains

Stochastic matrices

Classical states: N-point probability distribution, p = {p1,... pn},
where p; > 0 and Z,N:1 pi=1

Discrete dynamics: p! = Sjip;, where S is a stochastic matrix of size N

and maps the simplex of classical states into itself, S: Ay_1 — Apny_1.

Frobenius—Perron theorem
Let S be a stochastic matrix:
a) Sj>0fori,j=1,...,N,
b) SN, S; =1 forallj=1,...,N.
Then
i) the spectrum {z}, of S belongs to the unit disk,
i) the leading eigenvalue equals unity, z; = 1,
iii) the corresponding eigenstate piny is invariant, Spiny = Pinv-
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Quantum stochastic maps (trace preserving, CP maps)

Superoperator ® : My — My

A quantum operation can be described by a matrix ® of size N2,
p = ®p or p,'nu = ¢,’?,,} Pny -

The superoperator ® can be expressed in terms of the Kraus operators A;,

| A\

Dynamical Matrix D: Sudarshan et al. (1961)
obtained by reshuffling of a 4—index matrix ® is Hermitian,
._ _pt _. R
Drﬁ)n :=®my, so that Do = Dy =: &7 .
v nv

Theorem of Choi (1975). A map & is completely positive (CP)
if and only if the dynamical matrix D is positive, D > 0.

N
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Spectral properties of a superoperator ¢

Quantum analogue of the Frobenious-Perron theorem

Let ® represent a stochastic quantum map, i.e.
a’) ®f > 0; (Choi theorem)
b') Tra®R =1 & 3, ® = 6. (trace preserving condition)

1
Then ’
i) the spectrum {z,-},l"zz1 of ® belongs to the unit disk,
ii") the leading eigenvalue equals unity, z; =1,
iii") the corresponding eigenstate (with N2 components) forms a matrix w
of size N, which is positive, w > 0, normalized, Trw = 1, and is invariant
under the action of the map, ®(w) = w.

Classical case

| A\

In the case of a diagonal dynamical matrix, D;; = d;dj; reshaping its
diagonal {d;} of length N2 one obtains a matrix of size N, where S;j = D

of size N which is stochastic and recovers the standard F—P theorem.
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Exemplary spectra of (typical) superoperators

Spectra of several random superoperators ® for a) N =2 and b) N =3
contain:

i) the leading eigenvalue z; = 1 corresponding to the invariant state w,
ii) real eigenvalues,

iii) complex eigenvalues inside the disk of radius r = |z| < 1.
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Random (classical) stochastic matrices

Ginibre ensemble of complex matrices

Square matrix of size N, all elements of which are
independent random complex Gaussian variables.

An algorithm to generate S at random:

1) take a matrix X form the complex Ginibre ensemble
2) define the matrix S,

N
2 2
Si = X2/ D 1%
i=1
which is stochastic by construction:

each of its columns forms an independent random vector distributed
uniformly in the probability simplex Apy_;.
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Random quantum states

How to generate a mixed quantum state at random?

1) Fix M > 1 and take a N x M random complex Ginibre matrix X;
2) Write down the positive matrix Y := XXT,
3) Renormalize it to get a random state p,

Y
T
This matrix is positive, p > 0 and normalised, Trp = 1, so it represents a
quantum state!

p =

Special case of M = N (square Ginibre matrices)

Then random states are distributed uniformly with respect to the
Hilbert-Schmidt (flat) measure,

e.g. for M = N = 2 random mixed states cover uniformly the interior of
the Bloch ball.
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Random (quantum) stochastic maps

An algorithm to generate ® at random:

1) Fix M > 1 and take a N?> x M random complex Ginibre matrix X;
2) Find the positive matrix Y := Tra XX and its square root /Y
3) Write the dynamical matrix (Choi matrix)

D=(1y® %)XX*(ILN ® %) :

4) Reshuffle the Choi matrix to obtain the superoperator @ = DR and use
to produce a random map, pmy = Pmy Py -
nv

Map ® obtained in this way is stochastic !
i.e. ® is completely positive and trace preserving
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Random stochastic maps ||

Probability distribution for random maps

P(D) « det(DMN*)§(TraD — 1),

In the special case M = N? the determinant vanishes, so there are other
constraints on the distribution of the random Choi matrix D, besides the
partial trace relation, TraD = 1.

4

Interaction with M—dim. enviroment

1’) Chose a random unitary matrix U
according to the Haar measure on U(NM)
2") Construct a random map defining

p= TemlU(p ® W) (v)U']

where |v) € Hp is an arbitrary (fixed) state of the environment.
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Bloch vector representation of any state p

N2—1

p= ZT,'/\i

i=0
where A’ are generators of SU(N) such that tr (\'\V) = 6% and

A0 = Il/\/N and 7; are expansion coefficients.
Since p = pl, the generalized Bloch vector 7 = [70,- .-, Tn2_1] is real.

Stochastic map ® in the Bloch representation

The action of the map ® can be represented as
' =&(7) = C1 + kK,

where C is a real, asymmetric contraction matrix of size N> — 1 while & is

10

a translation vector. Thus ® = [ . C ] and the eigenvalues of C are

also eigenvalues of ®.
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Random maps & random matrices

Full rank, symmetric case M = N?

For large N the measure for C can be described by the real Ginibre
ensemble of non-hermitian Gaussian matrices.

Spectral density in the unit disk

The spectrum of ® consists of:

i) the leading eigenvalue z; = 1,

i) the component at the real axis, the distribution of which is
asymptotically given by the step function P(x) = %@(x —1)©(1 — x),

iii) complex eigenvalues, which cover the disk of radius r = |z| <1
uniformly according to the Girko distribution.

Subleading eigenvalue r = |z|

The radius r is determined by the trace condition: Since the avearge
(TrD?) = (Tro®'t) ~ const then r ~ 1/N so the spectrum of the rescaled

matrix ®' := N® covers the entire unit disk.
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Spectral density for random stochastic maps

Numerical results
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a) Distribution of complex eigenvalues of 10* rescaled random operators
®' = No already for N = 10 can be approximated
by the circle law of Girko.
b) Distribution of real eigenvalues P(x) of ®' plotted for N = 2,3,7 and
14 tends to the step function!

V.
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Convergence to equilibrium and decoherence rate

Average to invariant state w = ®(w)

L(t) = (Tr[®*(po) — w|)y, where the average is performed over an
ensemble of initially pure random states, pg = |9)(®|.

Numerical result confirm an exponential convergence, L(t) ~ exp(—at).
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a) Average trace distance of random pure states to the invariant state of
® as a function of time for N = 4(e), 6(H), 8(%).

b) mean convergence rate (a)¢ scales as In N with the system size N.
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Comparison with a quantum dynamical system

Generalized quantum baker map with measurements

a) Standard quantisation of Balazs and Voros B = F,]\L, [ Fujz 0 ]

0 Fn2
where Fpy denotes the Fourier matrix of size N. Then p' = Bp;Bt
b) M measurement operators projecting into orthogonal subspaces

Pi+1 = 2?11 Pip' P;

-1 1 -1 1

ng Rgl
Numerical spectra of superoperator of baker map for N = 64, a) M = 2,
b) M =8 (master thesis of M. Smaczyriski, in preparation).
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Concluding Remarks

@ Quantum Chaos:
a) in case of closed systems one studies unitary evolution operators
and characterizes their spectral properties,
b) for open, interacting systems one analyzes non—unitary time
evolution described by quantum stochastic maps.

@ We analyzed spectral properties of quantum stochastic maps and
formulated a quantum analogue of the Frobenius-Perron theorem.

@ A natural flat measure in the space of quantum operations (stochastic
maps) is defined and an algorithm to produce them at random is
given.

@ For large N random quantum operations can be described by random
matrices of the real Ginibre ensemble.

@ Sequential action of a fixed random map brings all pure states to the
invariant state exponentially fast. The convergence rate scales
logarithmically with the system size .
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