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Billiards as scattering systems
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Green function approach
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ψ(r, k)
microwave billiard with N attached wave-
guides (Stöckmann et al. 2002).

ψ(r, k): wave function within the billiard

Ḡ(r, r′, k) =
∑

n

ψ̄n(r)ψ̄n(r′)

k2−k̄2
n

: billiard Green function with mixed boundary

conditions (ψ = 0 on the boundary, ∇ψ = 0 at the waveguides).
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microwave billiard with N attached wave-
guides (Stöckmann et al. 2002).

ψ(r, k): wave function within the billiard

Ḡ(r, r′, k) =
∑

n

ψ̄n(r)ψ̄n(r′)

k2−k̄2
n

: billiard Green function with mixed boundary

conditions (ψ = 0 on the boundary, ∇ψ = 0 at the waveguides).

Both ψ(r, k) and Ḡ(r, r′, k) obey Helmholtz equations:

(

∆ + k2
)

ψ(r, k) = 0
(

∆ + k2
)

Ḡ(r, r′, k) = δ(r − r′)
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ψ(r, k)
microwave billiard with N attached wave-
guides (Stöckmann et al. 2002).

ψ(r, k): wave function within the billiard

Ḡ(r, r′, k) =
∑

n

ψ̄n(r)ψ̄n(r′)

k2−k̄2
n

: billiard Green function with mixed boundary

conditions (ψ = 0 on the boundary, ∇ψ = 0 at the waveguides).

Both ψ(r, k) and Ḡ(r, r′, k) obey Helmholtz equations:

(

∆ + k2
)

ψ(r, k) = 0
(

∆ + k2
)

Ḡ(r, r′, k) = δ(r − r′)

|×Ḡ(r, r′, k)

|×ψ(r, k)

ψ(r, k)∆Ḡ(r, r′, k) − Ḡ(r, r′, k)∆ψ(r, k) = ψ(r, k)δ(r − r′)
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Green function approach ( cont.)

Integrating over the billiard area and applying Green’s theorem we
obtain

ψ(r′, k) =

∫

dS
[

ψ(r, k)∇⊥Ḡ(r, r′, k) − Ḡ(r, r′, k)∇⊥ψ(r, k)
]

= −L
∑

i

Ḡ(ri, r
′, k)∇⊥ψ(ri, k)

L: width of the waveguides
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Green function approach ( cont.)

Integrating over the billiard area and applying Green’s theorem we
obtain

ψ(r′, k) =

∫

dS
[

ψ(r, k)∇⊥Ḡ(r, r′, k) − Ḡ(r, r′, k)∇⊥ψ(r, k)
]

= −L
∑

i

Ḡ(ri, r
′, k)∇⊥ψ(ri, k)

L: width of the waveguides

In the guides we have

ψ(r, k) = aie
ık|r−ri| − bie

−ık|r−ri|

The solutions are matched at the coupling positions:

ai − bi = ıkL
∑

j

Ḡij(aj + bj) , Ḡij = Ḡ(ri, rj , k)
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The scattering matrix

In matrix short-hand notation =⇒

a− b = ıkLḠ(a+ b) , Ḡ = W † 1
E−HW

Comparison with definition b = Sa of the scattering matrix yields

S =
1 − ıγḠ
1 + ıγḠ

, γ = kL

=⇒A measurement of S thus yields the modified Green function Ḡ!
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The scattering matrix

In matrix short-hand notation =⇒

a− b = ıkLḠ(a+ b) , Ḡ = W † 1
E−HW

Comparison with definition b = Sa of the scattering matrix yields

S =
1 − ıγḠ
1 + ıγḠ

, γ = kL

=⇒A measurement of S thus yields the modified Green function Ḡ!

This is equivalent to

S = 1 − 2ıW † 1
E −Heff

W

where W is the matrix with elements Wnm =
√
γψ̄n(rm), and

Heff = H̄ − ıWW †
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The isolated resonance regime
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The billiard Breit-Wigner formula

For isolated resonances

S = 1 − 2ıW † 1
E−Heff

W

reduces to

Sij(E) = δij − 2ıγ
∑

n

ψ̄n(ri)ψ̄n(rj)

E − Ēn +
ı

2
Γn

, Γn = 2γ
∑

k

∣

∣ψ̄n(rk)
∣

∣

2

A transmission measurement as a function of antenna positions thus
yields the modified Green function.
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The billiard Breit-Wigner formula

For isolated resonances

S = 1 − 2ıW † 1
E−Heff

W

reduces to

Sij(E) = δij − 2ıγ
∑

n

ψ̄n(ri)ψ̄n(rj)

E − Ēn +
ı

2
Γn

, Γn = 2γ
∑

k

∣

∣ψ̄n(rk)
∣

∣

2

A transmission measurement as a function of antenna positions thus
yields the modified Green function.

Random matrix assumption: ψn(r) is Gaussian distributed!

Allows calculation of distribution of

Resonance depths |ψn(r)|2

Line widths Γn = 2γ
∑

k

|ψn(rk)|2
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The Porter-Thomas distribution

Line width distribution function:

Pν(x) =

〈

δ

(

x−
ν
∑

k=1

|ψn (rk)|2
)〉

=
(

A
2π

)
ν
2

∫

δ

(

x−
ν
∑

k=1

|ψk|2
)

∏

k

exp
(

−A
2 ψ

2
k

)

dk

Introducing ν-dimensional polar coordinates the integration is trivial and
yields χ2 distribution

Pν(x) =
(

A
2

)
ν
2 1

Γ( ν
2 )
x

ν
2
−1 exp

(

−A
2 x

)
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The Porter-Thomas distribution

Line width distribution function:

Pν(x) =

〈
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(
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∑
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|ψn (rk)|2
)〉

=
(

A
2π

)
ν
2

∫

δ

(

x−
ν
∑

k=1

|ψk|2
)

∏

k

exp
(

−A
2 ψ

2
k

)

dk

Introducing ν-dimensional polar coordinates the integration is trivial and
yields χ2 distribution

Pν(x) =
(

A
2

)
ν
2 1

Γ( ν
2 )
x

ν
2
−1 exp

(

−A
2 x

)

For distribution of resonance depths one gets in particular a
Porter-Thomas distribution

P1(x) =
√

A
2πx exp

(

−A
2 x

)
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Vibrating plates

Porter-Thomas distributions in the squared amplitude distribution
functions of vibrating silicon plates of a quarter stadium-Sinai billiard
(K. Schaadt, diploma work, Copenhagen 1997).
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χ
2 distributions in microwave billiards

Distribution of partial
widths for a supercon-
ducting quarter stadium
billiard with three atta-
ched antennas (Alt et
al. 1995).

top: one antenna
middle: two antennas
bottom: linewidth

Solid lines:
χ2 distributions with ν =

1, 2, 3.
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Three-dimensional billiards

Perturbing bead method measures frequency shift proportional to

∆ν ∼ −2E2 + B
2

E,B: electromagnetic fields at the perturber position
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Three-dimensional billiards ( cont.)

Assuming that all six field components are uncorrelated, the distribution
function of frequency shifts is given by a generalized χ2 distribution
(Dörr et al. 1998)

P (∆ν) =
√

2α2

3π |∆ν| exp
(

−α∆ν
4

)

K1

(

3
4α|∆ν|

)

Top: typical field distribution
Bottom: corresponding frequency shift
distribution P (∆ν).

=⇒For chaotic field distributions the
fields can be considered as a random
superposition of plane waves !
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Reflection fluctuations
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Influence of absorption

How does the distribution of reflection
coefficients R vary with increasing
absorption?

(R. Mendez et al. 2003)

Analytical results in the limits of
weak absorption (Beenakker, Brou-
wer 2001) and strong absorption (Ko-
gan et al. 2000).
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Distribution of reflection coefficients

— : experiment
— : simulation

Simulation parameters (antenna
coupling, wall absorption) taken from
the experiment.

=⇒There are no free parameters!

Results confirmed by theory (Fyodo-
rov, Savin 2004).
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The Harmonic Inversion
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Problem

Extremely difficult to resolve resonances in the regime of strong
overlap

Therefore up to now only results on average properties such as
distribution of transmission coefficient etc. available

Alternative: Harmonic Inversion

Essential developments by

Wall, Neuhauser 1995

Mandelshtam, Taylor 1997

Brought into a manageable form by

Main 1999

The following presentation follows the paper by Wiersig, Main 2007
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Technique

Exponentially decaying time signal

c(t) =
K
∑

k=1

dke
−ıωkt , ωk = Ωk − ı

2Γk

Discretization

cn = c(nτ) =
K
∑

k=1

dk (zk)
n
, zk = e−ıωkτ

Discretized Mellin transform

g(z) =
∞
∑

n=0
cnz

−n =
K
∑

k=1

dk
∞
∑

n=0

(

zk

z

)n

Summation of geometric series

g(z) =
K
∑

k=1

zdk
z − zk

=
PK(z)
QK(z)

PK(z), QK(z): Polynomials of degree K
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Technique ( cont.)

g(z) =
K
∑

k=1

zdk
z − zk

=
PK(z)
QK(z)

zk = e−ıωτ : Zeros of QK(z)

dk =
PK(zk)
zkQ

′
K(zk)

Now the crucial point:

Knowledge of 2K signalpoints c0, . . . , c2K−1 is sufficient to calculate the
coefficients of the two polynomials

PK(z) =
K
∑

k=1

bkz
k , QK(z) =

K
∑

k=1

akz
k − 1
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Technique ( cont.)

Coefficients ak of QK(z) obtained as solutions of the linear set of
equations

cn =
K
∑

k=1

cn+kak , n = 0, . . . , K − 1

Once the ak are known, the coefficients bk of PK(z) are obtained
from

bk =
K−k
∑

m=0
ak+mcm , k = 1, . . . , K

With QK(z) and PK(z) known, the ωk and dk can be determined as
described above.
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Points to be considered

Conditions

Complex time signal needed

Time signal must be a superposition of damped exponentials

Number of data points must exceed the number of resonances
by a factor of 2

Virtues of the technique

No fit necessary

Number of resonances may be unknown

Obvious problem

How to become rid of spurious resonances?

Question

Is the technique sufficiently robust to cope with experimental
data?
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Line width distributions
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Fourier transform of the spectrum

S(ν) = 1 − ∑

n

an

ν−νn+iγn

=⇒

Ŝ(t) =











1
2π

∞
∫

−∞
e−2πiνtS(ν)dν = δ(t) − ∑

n ane
−2πi(νn−iγn)t t > 0

0 t ≤ 0
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Harmonic inversion

Real (top) and imaginary
(bottom) part of the spectrum

solid line: original spectrum

dotted line: reconstructed
spectrum

on top: difference

horizontal and vertical bars:
positions and widths of the
found resonances

Found resonances: 16
Expected (Weyl formula): 18
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Pole distribution in the complex plane

red: expected from wall absorption (skin effect)

blue: expected from overall exponential decay (Schäfer et al. 2003),

Ŝ(t) ∼ e−λt
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Line widths distribution

Sommers et al. 1999: Exact results for arbitrary number of channels

However: “Rather awkward even for the simplest case!”

One channel case:

P (y) = 1
4
∂2

∂y2

∫ 1

−1
dλ (1 − λ2)e2πλyF (λ, y) , y = Γ/∆

where

F (λ, y) = (g − λ)
∫ ∞
g

dp1
e−πyp1

(λ−p1)2
√

(p2
1
−1)(p1−g)

∫ g

1
dp2

(p1−p2)e−πyp2

(λ−p2)2
√

(p2
2
−1)(g−p2)

g = 2
Ta

− 1

For g=1 (perfect coupling): P (y) ∼ 1/(4πy2)
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Experimental results

—: from Harmonic Inversion
—: from ordinary fit
- - -: theory

Assumption:

Line width due to one-
channel coupling (antenna)
and constant wall absorpti-
on.

Quite good agreement for
high frequencies (bottom),
but for low frequencies (top)
there is something missing!
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Interpretation

There are additional channels!

The exact formulas (Sommers et al. 1999) posed tremendous
numerical problems.

Therefore a phenomenological approach has been used for the line
width distribution:

p(Γ) =
∫

χν(Γ − Γ̂)p0(Γ) d Γ̂

p0(Γ): one-channel distribution (antenna)

χ2
ν(Γ): chi-square distribution with ν degrees of freedom, expected for

coupling to ν independent channels.
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Interpretation

There are additional channels!

The exact formulas (Sommers et al. 1999) posed tremendous
numerical problems.

Therefore a phenomenological approach has been used for the line
width distribution:

p(Γ) =
∫

χν(Γ − Γ̂)p0(Γ) d Γ̂

p0(Γ): one-channel distribution (antenna)

χ2
ν(Γ): chi-square distribution with ν degrees of freedom, expected for

coupling to ν independent channels.

Exact in the non-overlapping regime, but questionable elsewhere!

Maribor, Let’s face chaos, July 2008 – p. 29



Experimental results ( cont.)
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Experimental results ( cont.)

Perfect agreement, assu-
ming N=10 (top) and N=20
(bottom) weakly coupled
additional channels.
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Experimental results ( cont.)

Perfect agreement, assu-
ming N=10 (top) and N=20
(bottom) weakly coupled
additional channels.

Insert: Simulation using the
same parameters as in the
experiment.

Folding approximation
works very well!
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Summary

Harmonic inversion has passed the experimental test successfully!

Resonances resolved in a regime where the line width exceeds
the mean level spacings by a factor of 10 (in preliminary
experiments even factors of 50 have been achieved!)

Allows studies of hitherto unaccessible questions, such as

pole distance distributions

spectra level dynamics in the complex plane

fractal Weyl law

. . .
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Thanks!

Coworkers:

U. Kuhl
R. Höhmann

Cooperations:

R. Mendez, Cuernavaca, Mexico
J. Main, Stuttgart

The experiments have been supported by the DFG via the

FG 760 “Scattering Systems with Complex Dynamics”.
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