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The Main Assertion of Stationary Quantum Chaos
(Casati, Valz-Gries, Guarneri 1980; Bohigas, Giannoni, Schmit 1984; Percival 1973)

(A1) If the system is classically integrable: Poissonian spectral statistics
(A2) If classically fully chaotic (ergodic): Random Matrix Theory (RMT) applies

e If there is an antiunitary symmetry, we have GOE statistics
o If there is no antiunitary symmetry, we have GUE statistics

(A3) If of the mixed type, in the deep semiclassical limit: we have no spectral
correlations: the spectrum is a statistically independent superposition of regular
and chaotic level sequences:

j=m
E(k, L) = > 1] E)(k;j, ;L) (1)
ki1+ko+...+km=k 5=1

p;= relative fraction of phase space volume = relative density of corresponding
quantum levels.
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7 =1 is the Poissonian sequence, 7 = 2 the largest chaotic, 7 = 3 the next largest
chaotic etc. Of course: p1 + po + ... + o, = 1

Special case: The gap probability:

1__[ (0, p; L (2)

d>E(0,5)
dS2

and remember: P(S) = level spacing distribution =

Typically we have just one regular ; = 1 and one chaotic ;7 = 2 sequence:

E<k L Z EPozsson(kl ,U1L>ERMT(]€27M2L) (3)
ki1+ko=k

(A4) If we are not sufficiently deep in the semiclassical limit (the effective Planck
constant is not sufficiently small) we see deviations from PUSC, namely localization
and tunneling phenomena, and therefore deviations from (A3)

Example of mixed type system: Hydrogen atom in strong magnetic field
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Example of mixed type system: Hydrogen atom in strong magnetic field

(Diamagnetic Kepler Problem)

p2 62 eL |B| 2B2
8mec2'0

H =
2Me 2me

B = magnetic field strength vector pointing in z-direction

r = \/:132 + y? + 22 = spherical radius, p = y/x? + y? = axial radius

L. = z-component of angular momentum = conserved quantity

2.3

¢ = 2.35 x 10” Gauss = 2.35 x 10° Tesla

Characteristic field strength: By =

Rough qualitative criterion for global chaos: magnetic force ~ Coulomb force
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Fig. II1.9, Poincaré surfaces of section Z(v, p»; u=0) at different scaled energies (corresponding to
increasing diamagnetic strength). The elliptic fixed point at the origin corresponds to the
" straight-line orbit [, the other two fixed points to the straight-line orbit .
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2D GOE and GUE of random matrices:

T Y +12

Quite generally, for a Hermitian matrix ( .
y—1iz -

) with x,y, z real

the eigenvalue A = £1/22 4 y2 + 22 and level spacing
S=A1—A2=2\/x2+y2+z2

The level spacing distribution is

P(S)= | dodyd: gu(a)g, a0 2P P+ (@)

2

which is equivalent to 2D GOE/GUE when g,(u) = g,(u) = g.(u) = U—\lﬁexp(—%)
and after normalization to < S >=1

e 2D GUE P(S5) = 3252 exp(—ﬁ) Quadratic level repulsion

e 2D GOE g.(u) = 6(u) and P(S) = Z2 exp(— 42) Linear level repulsion

There is no free parameter: Universality
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2. Principle of Uniform Semiclassical Condensation (PUSC) of Wigner
functions of eigenstates (Percival 1973, Berry 1977, Shnirelman 1979, Voros 1979,
Robnik 1987-1998)

We study the structure of eigenstates in "quantum phase space”: The Wigner
functions of eigenstates (they are real valued but not positive definite):

Definition: W, (q,p) = m JdVXexp (—£p.X) ¢hn(qg — 5V (a + 5)

[ Wil(a, p)dVp = [¢n(q)]?

(P1)

(P2) [ Wa(q,p)d"q = |pn(p)I?
(P3) [Wa(q,p)d¥qd"p=1
(P4)
(P5)

P4) (2rh)N [ dNq dVpW,(a, p)Win(a, P) = dnm
P5) |[Wy(q,p)| < = h)N (Baker 1958)
(P6 = P4) [ W2(q,p)dVq dVp = o

(P7) h—0: Wy(q,p) — 2rh)"W2(q,p) >0
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In the semiclassical limit the Wigner functions condense on an element of phase
space of volume size (27h)" (elementary quantum Planck cell) and become positive
definite there.

Principle of Uniform Semiclassical Condensation (PUSC)

Wigner fun. W, (q, p) condenses uniformly on a classically invariant component:

(C1) invariant N-torus (integrable or KAM): W, (q,p) = Wé (I(q,p) — L)

(C2) uniform on topologically transitive chaotic region:

§(En—H(q,p)) Xw(q,p)
Wn(q,p) = [ dNq dNp §(En—H(q,p)) Xw(a,p)

where Y, (q, p) is the characteristic function on the chaotic component indexed by w

§(En—H(q,p))
[dNqdNp §(E,—H(q,p)

(C3) ergodicity: microcanonical: W,(q,p) =

Important: Relative Liouville measure of the classical invariant component:

[ dNq d"p §(En—H(a,p)) xw(a,p)
plw) = [ dNq dNp 6(En—H(q,p))
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3. Mixed type systems in the semiclassical limit

3.1 Statistical independence of regular and chaotic level sequences
E(k,L) probabilities (after unfolding!)

e Definition

E(k, L) = probability of having precisely k levels on an interval of length L.
o < k>=1L

e F(k=0,L) = gap probability (no level in L)

e connection to P(S), 3(L) and A(L):
P(S) = d’ PR S(L) = 325 o(k — L)2E(k, L) and

L) =2 [F(L® = 2L% + 13)S(r)dr

o Poisson: Episson(k, L) = Lie™F, P(S) =5, S(L) = L, A(L) = &.
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¢ RMT: GOE and GUE for £ < 7 tables in book of Mehta (1991)

e RMT: GOE and GUE for k£ > 8 Gaussian approximations:

L—k)?
B(k, L) & s exp (—<2Q(L>) ) where a(L) = S(L).

The general case of mixed type in the strict semiclassical (" deep”) limit of
sufficiently small effective & under the statistical independence assumption:

Ehn= Y [ Bk 5

ki+ko+...+km=k 7=1

p;= relative fraction of phase space volume = relative density of corresponding
quantum levels.

7 =1 is the Poissonian sequence, 7 = 2 the largest chaotic, j = 3 the next largest
chaotic etc. Of course: py + po + ... + o, = 1
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Special case: The gap probability: F(0,L) = ;Z”’ E;(0,u;L)

d*E(0,9)
dS?

and remember: P(S) = level spacing distribution =

Typically we have just one regular j = 1 and one chaotic ; = 2 sequence:

E(ka L) — Zkﬁ—kg:k EPoisson(kla MlL)ERMT(k% NQL)

How good is this theory at sufficiently small effective A?
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Figure 8: Same as in figure 1 but for 5168 consecutive levels of the quartic billiard
(Prosen 1998) for a = 0.04 with sequential quantum number A & 8000 000, and for
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Figure 9: Same as in figure 8 but for 15 < k£ < 20.
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According to our theory, for a two-component system, 7 = 1,2, we have
(Berry-Robnik 1984):

Poisson (regular) component: E;(0,5) =e°

Chaotic (irregular) component: E5(0,5) = Erfc( ) (Wigner = 2D GOE)

E(0,8) = E1(0, 11.5) E(0, 12S) = e~#15Erfe(¥YH25) where piy + g = 1.

d*E(0,9)

—z— and we obtain:

Then P(S) = level spacing distribution =

2

Ppr(8) = =1 (exp(~T25)(
(Berry-Robnik 1984)

2%) + 3 Brfc(L2475)

This is a one parameter family of distribution functions with normalized total

probability < 1 >=1 and mean level spacing < S >= 1, whilst the second moment
can be expressed in the closed form:

2
'“1

<82>=2["E(S)dS =2 |1-e™3 Erfc (f 2) — 2 (Poisson), 4/m (GOE)

2
K1
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Figure 2: Cumulative nearest level spacing distribution W (S) for a stretch of 5168
consecutive levels in the far semiclassical regime (k &~ 16000) (thick curve) and a
stretch of 6220 consecutive levels in the near semiclassical regime (k =~ 500) (thin _
curve). The first numerical curve is almost overlapping with theoretical best fitting
BR distribution for p} = 0.119 (dashed curve), while the second numerical curve
agrees very well with the best fitting Brody distribution with exponent § = 0.46
(dot-dashed curve). For comparison we give Poisson and GOE integrated level
spacing distributions (dotted curves). In the inset we plot the same data in the T-
function representation [21], T'(S) = In(—In(1 — W(S))) against In S, which trans-
forms the Brody distributions (an hence also Poissonian and Wigner) to straight
iines, and enhances the region of small spacings.
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Figure 3: Fine detail deviations from Berry-Robnik distribution (for p; = 0.119) in
a uniform U-function transformation [21]: we plot U(W(S)) — U(Wsr(S)) against
W(S). In the far semiclassical regime k£ =~ 16000 (5168 consecutive levels), the
difference of U-functions (thick curve) lies within a band of expected statistical error
SU (dashed lines), while in the near semiclassical regime k ~ 500 (6220 consecutive
levels), the difference of U-functions (thin curve) agrees very well with the difference
of U-functions for_the best fitting Brody distribution with =04 -
dotted curve).
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4. New approach to describe the transition regime of spectral correlations

Let us consider an ensemble of real symmetric 2D matrices

<ZE J )Withaj,yreal
Yy —x

the eigenvalue A = +1/22 + y? and level spacing S = A1 — Ay = 2/ 2% + y?
The level spacing distribution is P(S) = [5»dx dy g2(x)gy(y)0(S — 24/22 + y2)
Now we introduce a statistical ensemble by choosing g, (z) and g, (y).

In particular, we choose such g, (x) that if g,(y) = 6(y) (diagonal matrix) the level
spacing distribution P(S) is equal to our Pgr(S) (Berry-Robnik 1984):

Pgr(S) = e #15 (GXP(— Mﬁs ) (2p1p2 + M22S) + M%Erfc(%))

After a short calculation: g.(x) = Pgr(2x).
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Introducing the polar coordinates (r, ) instead of (x,y), we have
P(S) = fozw dy fooo r drg.(rcosp)gy(rsing)d(S — 2r)

P(S)=2 o "dp gi (S cosp) gy (Zsing).
Linear level repulsion is robust: P(S) ~ Z2¢,(0)g,(0)
Now we choose g.(x) = Pgr(2x) for the diagonal elements x

and Gaussian distribution for the offdiagonal elements such that o will play the role
of the perturbation or coupling parameter:

2
9y(y) = —=exp(—553)

and we get immediately (Stockmann 2006, Vidmar et al 2007):

/2 % sin*
PAsr(S mf / dp Pgr(Scosy) exp (—S o2 90)

which is now a two-parameter family of level spacing distributions parametrized by
the Berry-Robnik parameter 141 and the coupling parameter o: 2D random matrix
model for all-to-all couplings
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If instead only couplings between the regular and chaotic levels due to tunnelling are
considered we must assume

2
9y(y) = 2p1(1 — p1)—7—exp (—5’72) + (1= 2p1(1 — pa)]o(y)
and obtain immediately:
Phpr(S) =2 (1 — 1) Phpg(S) + [1 = 2p(1 — )] Ppr(S)

which is a 2D random matrix model for tunneling couplings between the
regular and chaotic energy levels
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Limiting cases of P/ 5,(S):

/2 2 4in2
Pigr(S \/ﬁf / dpPpRr(S cos ) exp( S — ‘P)

Small S: PA,(S) = 5T Pgr(0)

It has always a linear rise with the slope x 1/o
It can be improved by the power/series expansion of Pggr(S) = >, ,arS*.

Large S: expansion around ¢ = 0 to give large S asymptotics:

0 2 2
Phpg(S) =~ %fo dpPpr(S) exp (—SSJ% ) = Pgr(S)

dPBR

Can be improved by approximating Pgg(S cos¢) = Pgr(S) — 3¢S yielding:

o2 dPpp(S
PngR(S) ~ Ppr(S) — 25 %}5( )
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Left: Comparison of experimental data (histogram) with the best fitting theoretical
curves for PA% - Full line for the Gaussian model, dash-dotted for the exponential
model, dashed for BR (with the same p), and dotted for the Wigner distribution.
Right: Comparison of the numerical data (histogram) with the best fitting
theoretical curves for PL% .: Full line for the Gaussian model, dashed-dotted for
the exponential model, dashed for BR (with the same p), and dotted for the Wigner
distribution. oG and og are the best fitting values of o for the Gaussian and the
exponential model, respectively. N, is the number of objects in the histrogram. For

other details see text.
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Figure 1. (a), (c) show the results for W(S) and (b)~(d) show the so-called U-function
U(W) — U(Wggr). Here Wpg refers to the best fitting Berry-Robnik level spacing distribution,
so that abscissa in the diagrams (b), (d) is the ideal agreement with Berry-Robnik statistics. The
results for the quantized compactified standard map are in (a), (b) and for the two-dimensional
semiseparable autonomous Hamiltonian harmonic oscillator in (¢), (d). The full heavy curve is
data, the full light curve is the best-fitting Berry-Robnik, the broken curve is best-fitting Brody
and the chain curve is the best-fitting Abul-Magd. Abul-Magd is the upper curve and Brody is
the lower one. It is clearly seen for big § in the W-plots that the disagreement with Abul-Magd’s
prediction is very bad on this global scale, and this disagreement turns out to be indeed very
big in the U-function plots, except perhaps at small §. For the reference we plot here also
the £o bands (grey) of expected statistical standard deviation. For the sake of completeness
we quote the best fitting parameter values: In (a), (b) we have the classical py = 0.265, the
quantal Berry-Robnik p; = 0.273 and the quantal Abul-Magd ¢ = 0.448. In (c), (d) we have
the classical py = 0.291, the quantal Berry-Robnik p; = 0.286 and the quantal Abul-Magd
g = 0.466. In (a), (b) we have 160000 numerical quasi-energy levels for quantum maps with
dimensions 15982-16000, with the same kick parameter « = 1.8 and the same classical limit.
In (¢), (d) we have a stretch of 13445 energy levels starting from around 17 684 000th level. In
plots (a) and (c) we show for comparison also the GOE and Poissonian curves (dotted), and in
the inset the magnification of the situation at small spacings §. In (a) the differences between
the data and theory (Berry-Robnik) are not visible, whilst in (¢) they can be seen, especially in
the inset, whilst in both (b) and (d) the (quite small) differences between the data and theory
(Berry-Robnik) are made visible.
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Figure 2. We show the schematic diagram of the doubly transition region: from integrable to

ergodic classical dynamics and from near semiclassics (not very small i) to far semiclassics
(sufficiently small h).



P(S)

Figure 3. We show schematically two examples of the Brody-like level spacing distribution
(with higher maximum) and Berry-Robnik type, but in both cases indicated the exponentially
small (but here exaggerated) regime of linear level repulsion (see text).
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Discussion and conclusions

e The Principle of Uniform Semiclassical Condensation of Wigner functions of
eigenstates leads to the idea that in the sufficiently deep semiclassical limit the
spectrum of a mixed type system can be described as a statistically independent
superposition of regular and chaotic level sequences.

e As a result of that the E/(k, L) probabilities factorize and the level spacings, sigma
and delta statistics can be calculated in a closed form.

e At low energies in the near semiclassical limit where the effective Planck constant
is not sufficiently small, we see deviations from the uniform condensation (of WF),
localization phenomena and tunneling between regular and chaotic levels as well as
between regular and regular levels, and also between localized chaotic and chaotic
levels.

e \We propose a new 2-parameter family of level spacing distributions in terms of a
2D random matrix model (Stockmann 2006, Vidmar et al 2007). Regular-regular
correlations through the intermediary of a chaotic level as a second order effect
(chaos assisted tunnelling) must be included to improve our results on P} 5~ (S).
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