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The Main Assertion of Stationary Quantum Chaos
(Casati, Valz-Gries, Guarneri 1980; Bohigas, Giannoni, Schmit 1984; Percival 1973)

(A1) If the system is classically integrable: Poissonian spectral statistics

(A2) If classically fully chaotic (ergodic): Random Matrix Theory (RMT) applies

• If there is an antiunitary symmetry, we have GOE statistics
• If there is no antiunitary symmetry, we have GUE statistics

(A3) If of the mixed type, in the deep semiclassical limit: we have no spectral
correlations: the spectrum is a statistically independent superposition of regular
and chaotic level sequences:

E(k, L) =
∑

k1+k2+...+km=k

j=m∏
j=1

Ej(kj, µjL) (1)

µj= relative fraction of phase space volume = relative density of corresponding
quantum levels.



j = 1 is the Poissonian sequence, j = 2 the largest chaotic, j = 3 the next largest
chaotic etc. Of course: µ1 + µ2 + ...+ µm = 1

Special case: The gap probability:

E(0, L) =
j=m∏
j=1

Ej(0, µjL) (2)

and remember: P (S) = level spacing distribution = d2E(0,S)
dS2

Typically we have just one regular j = 1 and one chaotic j = 2 sequence:

E(k, L) =
∑

k1+k2=k

EPoisson(k1, µ1L)ERMT (k2, µ2L) (3)

(A4) If we are not sufficiently deep in the semiclassical limit (the effective Planck
constant is not sufficiently small) we see deviations from PUSC, namely localization
and tunneling phenomena, and therefore deviations from (A3)

Example of mixed type system: Hydrogen atom in strong magnetic field



Example of mixed type system: Hydrogen atom in strong magnetic field

(Diamagnetic Kepler Problem)

H =
p2

2me
− e2

r
+

eLz

2mec
|B|+ e2B2

8mec2
ρ2

B = magnetic field strength vector pointing in z-direction

r =
√
x2 + y2 + z2 = spherical radius, ρ =

√
x2 + y2 = axial radius

Lz = z-component of angular momentum = conserved quantity

Characteristic field strength: B0 = m2
ee3c

h̄2 = 2.35× 109 Gauss = 2.35× 105 Tesla

Rough qualitative criterion for global chaos: magnetic force ≈ Coulomb force











2D GOE and GUE of random matrices:

Quite generally, for a Hermitian matrix

(
x y + iz

y − iz −x

)
with x, y, z real

the eigenvalue λ = ±
√
x2 + y2 + z2 and level spacing

S = λ1 − λ2 = 2
√
x2 + y2 + z2

The level spacing distribution is

P (S) =
∫

R3
dx dy dz gx(x)gy(y)gz(z)δ(S − 2

√
x2 + y2 + z2) (4)

which is equivalent to 2D GOE/GUE when gx(u) = gy(u) = gz(u) = 1
σ
√

π
exp(−u2

σ2)
and after normalization to < S >= 1

• 2D GUE P (S) = 32S2

π2 exp(−4S2

π ) Quadratic level repulsion

• 2D GOE gz(u) = δ(u) and P (S) = πS
2 exp(−πS2

4 ) Linear level repulsion

There is no free parameter: Universality



2. Principle of Uniform Semiclassical Condensation (PUSC) of Wigner
functions of eigenstates (Percival 1973, Berry 1977, Shnirelman 1979, Voros 1979,
Robnik 1987-1998)

We study the structure of eigenstates in ”quantum phase space”: The Wigner
functions of eigenstates (they are real valued but not positive definite):

Definition: Wn(q,p) = 1
(2πh̄)N

∫
dNX exp

(
− i

h̄p.X
)
ψn(q− X

2 )ψ∗n(q + X
2 )

(P1)
∫
Wn(q,p)dNp = |ψn(q)|2

(P2)
∫
Wn(q,p)dNq = |φn(p)|2

(P3)
∫
Wn(q,p)dNq dNp = 1

(P4) (2πh̄)N
∫
dNq dNpWn(q,p)Wm(q,p) = δnm

(P5) |Wn(q,p)| ≤ 1
(πh̄)N (Baker 1958)

(P6 = P4)
∫
W 2

n(q,p)dNq dNp = 1
(2πh̄)N

(P7) h̄→ 0 : Wn(q,p) → (2πh̄)NW 2
n(q,p) > 0



In the semiclassical limit the Wigner functions condense on an element of phase
space of volume size (2πh̄)N (elementary quantum Planck cell) and become positive
definite there.

Principle of Uniform Semiclassical Condensation (PUSC)

Wigner fun. Wn(q,p) condenses uniformly on a classically invariant component:

(C1) invariant N-torus (integrable or KAM): Wn(q,p) = 1
(2π)N δ (I(q,p)− In)

(C2) uniform on topologically transitive chaotic region:

Wn(q,p) = δ(En−H(q,p)) χω(q,p)∫
dNq dNp δ(En−H(q,p)) χω(q,p)

where χω(q,p) is the characteristic function on the chaotic component indexed by ω

(C3) ergodicity: microcanonical: Wn(q,p) = δ(En−H(q,p))∫
dNq dNp δ(En−H(q,p)

Important: Relative Liouville measure of the classical invariant component:

µ(ω) =
∫

dNq dNp δ(En−H(q,p)) χω(q,p)∫
dNq dNp δ(En−H(q,p))





3. Mixed type systems in the semiclassical limit

3.1 Statistical independence of regular and chaotic level sequences

E(k,L) probabilities (after unfolding!)

• Definition

E(k, L) = probability of having precisely k levels on an interval of length L.

• < k >= L

• E(k = 0, L) = gap probability (no level in L)

• connection to P (S), Σ(L) and ∆(L):

P (S) = d2E(0,S)
dS2 , Σ(L) =

∑∞
k=0(k − L)2E(k, L) and

∆(L) = 2
L4

∫ L

0
(L3 − 2L2r + r3)Σ(r)dr

• Poisson: EPoisson(k, L) = Lk

k! e
−L, P (S) = e−S, Σ(L) = L, ∆(L) = L

15.



• RMT: GOE and GUE for k ≤ 7 tables in book of Mehta (1991)

• RMT: GOE and GUE for k ≥ 8 Gaussian approximations:

E(k, L) ≈ 1√
2πα(L)

exp
(
−(L−k)2

2α(L)

)
where α(L) = Σ(L).

The general case of mixed type in the strict semiclassical (”deep”) limit of
sufficiently small effective h̄ under the statistical independence assumption:

E(k, L) =
∑

k1+k2+...+km=k

j=m∏
j=1

Ej(kj, µjL) (5)

µj= relative fraction of phase space volume = relative density of corresponding
quantum levels.

j = 1 is the Poissonian sequence, j = 2 the largest chaotic, j = 3 the next largest
chaotic etc. Of course: µ1 + µ2 + ...+ µm = 1



Special case: The gap probability: E(0, L) =
∏j=m

j=1 Ej(0, µjL)

and remember: P (S) = level spacing distribution = d2E(0,S)
dS2

Typically we have just one regular j = 1 and one chaotic j = 2 sequence:

E(k, L) =
∑

k1+k2=kEPoisson(k1, µ1L)ERMT (k2, µ2L)

How good is this theory at sufficiently small effective h̄?











According to our theory, for a two-component system, j = 1, 2, we have
(Berry-Robnik 1984):

Poisson (regular) component: E1(0, S) = e−S

Chaotic (irregular) component: E2(0, S) = Erfc
(√

πS
2

)
(Wigner = 2D GOE)

E(0, S) = E1(0, µ1S)E2(0, µ2S) = e−µ1SErfc(
√

πµ2S
2 ), where µ1 + µ2 = 1.

Then P (S) = level spacing distribution = d2E(0,S)
dS2 and we obtain:

PBR(S) = e−µ1S
(
exp(−πµ2

2S2

4 )(2µ1µ2 + πµ3
2S
2 ) + µ2

1Erfc(µ2
√

πS
2 )

)
(Berry-Robnik 1984)

This is a one parameter family of distribution functions with normalized total
probability < 1 >= 1 and mean level spacing < S >= 1, whilst the second moment
can be expressed in the closed form:

< S2 >= 2
∫∞
0
E(S) dS = 2

µ1

1− e

µ2
1

πµ2
2 Erfc

(
µ1√
πµ2

) = 2 (Poisson), 4/π (GOE)







4. New approach to describe the transition regime of spectral correlations

Let us consider an ensemble of real symmetric 2D matrices(
x y
y −x

)
with x, y real

the eigenvalue λ = ±
√
x2 + y2 and level spacing S = λ1 − λ2 = 2

√
x2 + y2

The level spacing distribution is P (S) =
∫

R2 dx dy gx(x)gy(y)δ(S − 2
√
x2 + y2)

Now we introduce a statistical ensemble by choosing gx(x) and gy(y).

In particular, we choose such gx(x) that if gy(y) = δ(y) (diagonal matrix) the level
spacing distribution P (S) is equal to our PBR(S) (Berry-Robnik 1984):

PBR(S) = e−µ1S
(
exp(−πµ2

2S2

4 )(2µ1µ2 + πµ3
2S
2 ) + µ2

1Erfc(µ2
√

πS
2 )

)
After a short calculation: gx(x) = PBR(2x).



Introducing the polar coordinates (r, ϕ) instead of (x, y), we have

P (S) =
∫ 2π

0
dϕ

∫∞
0
r drgx(r cosϕ)gy(r sinϕ)δ(S − 2r)

P (S) = S
4

∫ 2π

0
dϕ gx

(
S
2 cosϕ

)
gy

(
S
2 sinϕ

)
.

Linear level repulsion is robust: P (S) ≈ πS
2 gx(0)gy(0)

Now we choose gx(x) = PBR(2x) for the diagonal elements x

and Gaussian distribution for the offdiagonal elements such that σ will play the role
of the perturbation or coupling parameter:

gy(y) = 1
σ
√

2π
exp(− y2

2σ2)

and we get immediately (Stöckmann 2006, Vidmar et al 2007):

PA
DBR(S) = S

σ
√

2π

∫ π/2

0
dϕ PBR (S cosϕ) exp

(
−S2 sin2 ϕ

8σ2

)
which is now a two-parameter family of level spacing distributions parametrized by
the Berry-Robnik parameter µ1 and the coupling parameter σ: 2D random matrix
model for all-to-all couplings



If instead only couplings between the regular and chaotic levels due to tunnelling are
considered we must assume

gy(y) = 2µ1(1− µ1) 1
σ
√

2π
exp

(
− y2

2σ2

)
+ [1− 2µ1(1− µ1)]δ(y)

and obtain immediately:

PT
DBR(S) = 2µ1(1− µ1)PA

DBR(S) + [1− 2µ1(1− µ1)]PBR(S)

which is a 2D random matrix model for tunneling couplings between the
regular and chaotic energy levels



Limiting cases of PA
DBR(S):

PA
DBR(S) = S

σ
√

2π

∫ π/2

0
dϕPBR(S cosϕ) exp

(
−S2 sin2 ϕ

8σ2

)
Small S: PA

DBR(S) = S
√

π
2σ PBR(0)

It has always a linear rise with the slope ∝ 1/σ

It can be improved by the power/series expansion of PBR(S) =
∑∞

k=0 akS
k.

Large S: expansion around ϕ = 0 to give large S asymptotics:

PA
DBR(S) ≈ S

σ
√

2π

∫∞
0
dϕPBR(S) exp

(
−S2ϕ2

8σ2

)
= PBR(S)

Can be improved by approximating PBR(S cosϕ) ≈ PBR(S)− 1
2ϕ

2S dPBR
dS yielding:

PA
DBR(S) ≈ PBR(S)− 2σ2

S
dPBR(S)

dS



Antenna distorted BR distribution PAn
DBR(S) (all-to-all level couplings)



Tunnelling distorted BR distribution PTn
DBR(S) : only (tunneling) couplings between

the regular and chaotic levels are allowed.



Left: Comparison of experimental data (histogram) with the best fitting theoretical
curves for PAn

DBRN : Full line for the Gaussian model, dash-dotted for the exponential
model, dashed for BR (with the same ρ), and dotted for the Wigner distribution.
Right: Comparison of the numerical data (histogram) with the best fitting
theoretical curves for PTn

DBRN : Full line for the Gaussian model, dashed-dotted for
the exponential model, dashed for BR (with the same ρ), and dotted for the Wigner
distribution. σG and σE are the best fitting values of σ for the Gaussian and the
exponential model, respectively. No is the number of objects in the histrogram. For
other details see text.













Discussion and conclusions

• The Principle of Uniform Semiclassical Condensation of Wigner functions of
eigenstates leads to the idea that in the sufficiently deep semiclassical limit the
spectrum of a mixed type system can be described as a statistically independent
superposition of regular and chaotic level sequences.

• As a result of that the E(k, L) probabilities factorize and the level spacings, sigma
and delta statistics can be calculated in a closed form.

• At low energies in the near semiclassical limit where the effective Planck constant
is not sufficiently small, we see deviations from the uniform condensation (of WF),
localization phenomena and tunneling between regular and chaotic levels as well as
between regular and regular levels, and also between localized chaotic and chaotic
levels.

• We propose a new 2-parameter family of level spacing distributions in terms of a
2D random matrix model (Stöckmann 2006, Vidmar et al 2007). Regular-regular
correlations through the intermediary of a chaotic level as a second order effect
(chaos assisted tunnelling) must be included to improve our results on PT

DBR(S).



Acknowledgements

This work has been supported by the Ministry of Higher Education, Science and
Technology of the Republic of Slovenia, by the Nova Kreditna Banka Maribor and
TELEKOM Slovenije.



6. References

Berry M V 1985 Proc. Roy. Soc. Lond. A 400 229
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