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“axiom”

old lore: collapse of pure state to mixture 

incompatible with unitary time evolution

n |n |2many runs: with probability

∑n |n |2 |n〈n|ensemble left in mixed state

nsingle run yields some unpredictable

if observable ̂  ∑n n |n〈n| measured 

for pure state |   ∑ n  n |n



state-of-the-art lore

“axiom” degraded to solution of 
Schrödinger eqn for object and apparatus

different      entangled with macroscopically distinct
pointer displacements 

 n

exactly solvable models reveal:

decoherence of different pointer displacements



simplest model



object O + pointer P + bath Β

observable ̂
many freedoms

H  HO  HP  HB  HOP  HPB

OPB0  |〈|⊗ PB0

single freedom, macroscopic
q̂, p̂ i

exactly solvable if harmonic oscillators for P and Β
and suitable choices for the interactions

entanglement
decoherence



for now, forget exact solution, assume entanglement 
and  decoherence fastest



initially thermal pointer

if pointer harmonic oscillator, initially thermal,

rms pointer displacement

de Broglie wavelength

Δq  kT/m

  / mkT

for m  1g,   1sec−1, T  300K

≈ 10−10m

≈ 10−22m

that’s a macroscopic pointer!



object pointer interaction HOP  ̂p̂

momentum generates pointer displacement

proportional to eigenvalue of measured observable

coupling so strong that different eigenvalues of
entail macroscopically distinct pointer displmts

̂

entanglement



Schrödinger cat state

would be produced by alone,  different
entangled with macroscop’ly distinct pointer displmts

nHOP

einp̂/q̂e−inp̂/  q̂  n

ετ must be so large that                                 and that
cannot be blurred by pointer reading           

|qn − qm |  Δq,
|qn − qm |

e−i̂p̂/ |⊗ |0
 ∑n n |n⊗ e−inp̂/ |0 ≡ ∑n n |n⊗ |qn 

≡ qn|0 |00| 0|
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Schrödinger cat type
superposition



bath coupling agent B must contain many additive terms

for oscillator bath,                             , with        coordinate of 
μ-th oscillator

B̂  ∑ q̂ q̂

such interaction decoheres macroscopic superposition to
mixture

decoherence

HPB  q̂B̂by pointer-bath interaction



for preliminary discussion, let              be switched on
only after entanglement and act exclusively; bath 
uncorrelated with object and pointer initially

HPB

TrBq | |q ′ e−iq̂B̂t/ eiq̂B̂t/

∑ nm  nm
∗ |n〈m |= e−iq−q ′B̂t/

∑ nm  nm
∗ |n〈m | B|qn qm |

q |qn qm |q ′ 

e−iqn−q mB̂t/q |qn qm |q ′ ∑ nm  nm
∗ |n〈m |=≈



decoherence factor e −iqn−qm B̂t/

since B assumed additive in many pieces, central 
limit theorem yields Gaussian statistics; let B̂  0

after exceedingly small time, off-diagonal terms negligible,
while diagonal terms remain constant in time

e−iqn−qm B̂t/  e−qn−qm 2 B̂2 t 2/22
 e−t/dec

2

 dec   2

|qn−qm | B̂2



measurement complete
after object-pointer entanglement  and decoherence

macroscopic mixture: different eigenstates of 
measured observable uniquely correlated with 
macroscopically distinct pointer displacements; 

OP  ∑n |n |2 |n〈n|⊗ |qn qn |

no relative coherence left,  only probabilities! 



generalization



thus far assumed:

more realistic  ent , dec  O,P,B

even better  ent , dec , B  O,P

 ent  dec  O,P,B

pointer & bath initially uncorrelated

and pointer & bath in mutual equilibrium initially



concurrence of 
entanglement & decoherence

essentially same discussion, but now mixture of
macroscopically distinct states arises directly, without
detour through superposition à la Schrödinger cat

no problem:  HOP  HPB  ̂p̂  q̂B̂

 ent , dec  O,P,B

e−i(p̂q̂B)t/  e−ip̂t/ e−iq̂Bt/ e−i̂t2B̂/2



 ent , dec , B  O,P

concurrence of 
entanglement, decoherence & bath correlation decay

if     and       both sums of many independent terms,
central limit theorem still applies

B H B

e−i(HBp̂q̂B)t/  e−iHBt/ e−ip̂t/ e
−i 

0

t
dq̂B̂/



essentially same discussion



mutual equilibrium of pointer and bath initially

e−HBHPq̂B̂  e−HP/2 e−HBq̂B̂ e−HP/2

high-temperature limit, excellent aproximation
for macroscopic pointer, relative  error O 22 /P

2 

essentially same discussion



final embellishment: drop harmonic oscillator
potential for pointer in favor of  

V(q) with ``metastable’’ dip at q=0, finite width and
barrier height a little larger than 1/β , and lower 
flatland outside

then object-pointer interaction only has to get pointer 
out of dip; amplification of pointer displacements 
achieved by V(q)



f.a.q.



Q:    why does single run yield unpredictable                
single pointer displacement?

for oscillator model is exponentially small like

A:    transition probabilty for |qm   |qn 

e−|q n−qm | 2/Δq 2 e−|q n−qm | 2/ 2, ,

therefore no transitions between different
characteristic pointer displacement after
decoherence time 



conclusion



measurement demystified:

what used to be an axiom for the founders of QM
has become a well understood consequence of
Schrödinger’s equation for compound dynamics
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