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Some history on another (related?) model:

• Chirikov (long time ago): standard map, diffusion in momentum space

• Fishman, Grempel, Prange (1982): localization in QKR

• Benvenuto, Casati, Pikovsky, Shepelyansky (1991): nonlinear QKR



  

Defining the problem

• a disordered medium

• linear equations of motion: all eigenstates are localized

• add short range nonlinearity (interactions)

• follow the spreading of an initially localized wave packet 

Will it delocalize or stay localized?



  

Nonlinearity and disorder – model I

uniformly from 

Conserved quantities: energy and norm 

Nonlinearity and disorder – model II

uniformly from 



  

The linear case:

Stationary states:

Eigenvectors = normal modes

Second moment:

Participation number:

amplitude / momentum Position 

Distribution characterization

Model I: norm density distributions Model II: energy density distributions



  

Spatial and temporal scales

Eigenvalue (frequency) spectrum width: 

Localization volume of eigenstate: 

Average frequency spacing inside 
                        localization volume:  

W=4 :

8

18 (sites)

0.43

Nonlinearity induced frequency shift:       β|ψ|
2

Equations in normal mode space:



  

DNLS W=4, β= 0.1, 1, 5 KG W=4, E= 0.05, 0.4, 1.5
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DNLS W=4, β= 0.1 Normal mode spaceReal space



  

DNLS W=4, β= 0.1Real space Normal mode space



  

DNLS W=4, β= 0.3Real space Normal mode space



  

DNLS W=4, β= 0.3Real space Normal mode space



  

DNLS W=4, β= 1 Normal mode spaceReal space



  

DNLS W=4, β= 1 Normal mode spaceReal space



  

DNLS W=4, β= 5 Normal mode spaceReal space



  

DNLS W=4, β= 5 Normal mode spaceReal space



  

The emerging picture

Kopidakis, Komineas,
SF, Aubry (2008)

Shepelyansky and Pikovsky (2008), 
Molina (1998)
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Immediate spreading : evolution of second moment 

Shepelyansky PRL 1993, Molina PRB 1998,
Pikovsky and Shepelyansky PRL 100 (2008) 094101

Second moment grows subdiffusively, therefore complete delocalization

W=4

II



  

A theorem for selftrapping

Main idea: presence of two conserved quantities.
If norm is concentrated in a small volume, and if nonlinearity is large enough,
wavepacket can not spread uniformly ad infinitum, since it can not convert
all its anharmonic (interaction) energy part into the bounded kinetic energy

Therefore no complete delocalization for = W+4 …

G. Kopidakis, S. Komineas, S. Flach, S. 
Aubry
Phys. Rev. Lett. 100 (2008) 084103
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Explaining subdiffusion

• at some time t packet contains 1/n modes:

• each mode on average has norm

• the second moment amounts to  

Two mechanisms of exciting a cold exterior mode:

• heated up by the packet (nonresonant process)

• directly excited by a packet mode (resonant process)

• in both cases the relevant modes are in a layer of 
  the width of the localization volume at the edge of the packet



  

Simplest assumption: • all modes in packet evolve chaotic
• all phases decohere sufficiently fast
• spreading = heating of cold exterior

Heating

exterior mode:

The momentary diffusion rate of packet equals the
inverse time the exterior mode needs to heat up to
the packet level:

and therefore …



  

We test this prediction by additionally dephasing the normal modes:

DNLS 
W=4, β=3
W=7, β=4
W=10, β=6

KG 
W=10, E=0.25
W=7, E=0.3
W=4, E=0.4
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 Therefore: • not all modes in packet evolve chaotic
• not all phases decohere sufficiently fast
• but spreading = heating of cold exterior?
• need to estimate the number of resonant modes

Perturbation approach: given a mode 

Resonant interaction if 

We compute 



  

W=4,7,10



  

Probability for mode to be resonant is ~ 

Number of resonant modes is constant on average

Fraction of resonant modes ~

Heating:

Direct resonant excitation: can be excluded for the same reasons!



  

We perform extensive computations

We averaged the measured exponent
over 20 realizations:

α = 0.34 ± 0.02 (DNLS)
α = 0.34 ± 0.05 (KG)

DNLS KG



  

Extensions to other dimensions and nonlinearities

If



  

Single site initial excitation versus one NM excitation

Single site excitation [W=4; β=0.1 (blue),β=1 (green),β=5 (red)].
One NM excitation [W=4;β=0.6 (blue), β=5 (green), β=20 (red)).

Single site One NM

Blue curves: 
regime of weak nonlinearity

Red curves:
selftrapping regime

Green curves:
intermediate regime



  

Conclusions

• strong nonlinearity: partial localization due selftrapping (discrete breathers),
   but part of wavepacket delocalizes

• weak nonlinearity: Anderson localization on finite times: similar to FPU!
  After that – detrapping, and wavepacket delocalizes

• intermediate nonlinearity: wavepacket delocalizes without transients

• subdiffusive spreading due to a finite number of resonant chaotic modes

• second moment of wavepacket ~  t

• results do not depend on presence or absence of norm conservation

• spreading is universal due to nonintegrability

• exponent does not depend on strength of nonlinearity and disorder

• ANDERSON LOCALIZATION IS DESTROYED BY THE SLIGHTEST
  AMOUNT OF NONLINEARITY ! … ?
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