DESCRIPTION OF TWO-DIMENSIONAL ATTRACTORS
OF SOME DISSIPATIVE INFINITE-DIMENSIONAL
DYNAMICAL SYSTEMS

Sinisa Slijepcevic
University of Zagreb, Croatia

Theoretical and computational methods in
dynamical systems and fractal geometry

8 April 2015

WO A ()
O i s
O ot 75

University of Zagreb

Croatia

Centre for Nonlinear

Dynamics, Zagreb
www.math.hr/cnd




OVERVIEW OF THE TALK _

Dissipative dynamics of pulled (driven) Frenkel-Kontorovora models:

Applied AC or DC force F(t) |:>

Description of the model and known numerical observations

The (at most) 2D representation of the attractor — theory and
numerics

Description of phase transitions and asymptotics
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Applications: new numerical algorithms to determine phase
transitions



@THE THEORY APPLIES TO 1D, DRIVEN DISSIPATIVE DYNAMICS

Overdamped, driven FK dynamics:

e/ ) ACor DC forcing

00 (FK)
H(x) a Z (W/(xn — Tpt1) + V(xn))
diy; OH (z)
o T oz + F'(1)
= Wi xpt1—xn) — Wiz, —2p_1) = V'(2,) + F(2).

* F(t) constant - DC dynamics

* F(t) time-periodic - AC dynamics

* V(x) - on-site (periodic) potential, e.g. V(x) = ksin(2 nx)
e W(x) — interaction potential, e.g. W(x —y) = (x — y)?/2



@ OTHER MODELS TO WHICH THE THEORY APPLIES

The theory also applies to (not included in this talk) :

 Damped FK dynamics, with sufficiently strong damping:

d?x,  dx, OH (x)
a2 YV T s, TFW

e Reaction-diffusion in 1D (f periodic in t,x):
U = Uy + f(E,x,u,Uy)
* In particular, Burger’s equation:

 Damped hyperbolic equation in 1D with sufficiently strong damping:

Upr T YU = Uy + (8 X, U, Uy)



@ EXAMPLES OF PHYSICAL MODELS

* DNA unzipping (in replication and transcription)
* Peyrard — Bishop — Dauxois model (Floria, Baesens, Gomez-Gardenez, 2006)

* V —interaction between nucleotides; W — interaction between neighbouring pairs;
F — unzipping force; y — the distance between nucleotide pairs
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e Other physical models: Charge density wave transport; Josephson junction arrays;
dislocation dynamics in solids; in surface physics ...



@ NUMERICALLY OBSERVED BEHAVIOR — DC DRIVING

Rigorously known:

e ,Depinning” (,unlocking”) force typically
non-zero

* Depinning force and sliding speed
depend on the mean spacing
* Non-zero speed for mean spacing r:

there exists unique ,,ordered” orbit
(uniformly sliding state)

A

No / limited rigorous results:

* Sharp estimates of depinning force?

* Asymptotics for various initial conditions
(covergence to the sliding solution?)

* Behavior close to pinning/depinning
(unlocking) transition?

e Speed of convergence?
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Typical dependence of speed on force
(source: Floria, Mazo, 1996)
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@ NUMERICALLY OBSERVED BEHAVIOR — AC DRIVING

o rear dynamics

A

Rigorously known:

* There exist ordered (synchronized) orbits
for any mean spacing (Qin, 2013)

No / limited rigorous results:

* Rigorous explanation of ,,mode locking”? 04

* Isthe v(F) dependence a devil staircase? )
03r
» Description of the ,,dynamical Aubry ;

transition”? > oal
» Convergence to synchronized orbits / [

asymptotics for arbitrary initial 01f

conditions? '
 Speed of convergence? .- = £ - 7
* Etc. F

Typical dependence of speed on force for
three FK models - different site potentials
(source: Floria, Mazo, 1996)
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@ MORE NUMERICS : AVERAGE SPEED VS. AVERAGE FORCE
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@ THE MATHEMATICAL BACKGROUND

The Aubry-Mather theory

* Representation of
ground states of FK
model as a twist map

e Commensurations /
discomensurations

Poincare-Bendixson
theorem for 1D reaction-
diffusion equations

* Fiedler, Mallet-Paret,
1989

* Asymptotics for
reaction-diffusion on
bounded domains

Ergodic theory

* SRB measures
* Physical measures
*  Minimising measures

Hamiltonian dyn.

KAM theory

* Break-up of invariant tori
(Converse KAM)

 Renormalization theory




@ THE AUBRY — MATHER THEORY

Description of equilibria: Phase portrait of the 2D representation:

* Elementary: all equilibria (F=0,
du/dt=0) characterized as orbits
of a 2D twist area-preserving map

* Aubry-Mather: existence of
ground states for arbitrary mean
spacing (=Aubry-Mather sets)

e Ground states are ordered

e Ground states lie on either

Invariant torus (circle) |

or

Cantor set |

spacing >
x (position) 10




@ POINCARE-BENDIXSON THEOREM FOR REACTION-

DIFFUSION EQUATIONS

* Equation: reaction-diffusion in 1d on [0,1], periodic boundary conditions

Uy = u:(;:r;"_f(xvu? ul)
u(.,0) = u’(x)

* Theorem (Fiedler, Mallet-Paret, 1989): The w-limit set w(u) for any u
projects injectively to a compact 2D set

* Similar theorem for FK model (Baesens, MacKay, 1998): For finite FK
model with periodic boundary conditions

* Key insight: the ,intersection-counting” (,,lap-number”) function is a
discrete Lyapunov function
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@ PHYSICAL SPACE-TIME MEASURES

* Physical (probability, invariant) measures: time averages of any
observable on the basin of attraction converge to the spatial average

* Known for uniformly hyperbolic, Axiom A systems: unique physical
measure (SRB measure)

* Adapted definition to our setting

* Let K € R? be a (compact) set of FK chain configurations (i) ez

Definition: We say that a time- and space-invariant (probability) measure u

lim lim — j Z F(S™u(D)dt = J FD) duus)

n—oo Tooo 2NnT
m=—n
\ Y J \ Y J
Expectation
Space-time average = w.r. to physical

\_ measure

on K is space-time physical, if for any u® € K, and any cont. function fon K,




(2) THE MAIN RESULT: ATTRACTOR IS (AT MOST) 2D

4 )
Theorem (S.Sl., 2014): The attractor A for AC and DC dissipatively driven FK
model is at most 2-dimensional.

The injective projection is given with : A = R?,

T[((xn)) = (X0, X1 — Xo)

\ _/

Definition of the attractor —in an ergodic theoretical sense.
Equivalent definitions of the attractor

* Configurations ,,observable” for positive density of times and spatial
translates,

* Union of supports of all space-time invariant measures,

* Configurations ,observable” for positive space-time probability.
13



2D representations of the attractor of a DC-driven standard FK model, with k=1.0. The DC force (left to right):
F=0, 0.001, 0.005, 0.05. The same color corresponds to the same configuration and its time evolution. 14



@ WHAT IS A DYNAMICAL PHASE TRANSITION?

Confusion in the literature: how to recognize dynamical (Aubry) phase
transition?

e DCcase ,clear”: when the chain starts moving

AC case — unclear, speed vs. force dependency complex

We distinguish pinned vs. depinned phase (or locked vs. unlocked)

Pinned phase: part of the physical space asymptotically , off-limit”

42 )
Theorem (S.Sl., 2014): The following characterizations of the depinned

phase (for fixed mean spacing) are equivalent:

* Projection of the attractor to the first coordinate covers the entire real
line (in the pinned phase, it is a Cantor set)

* The space-time invariant measure is unique

* The modulation function is smooth (in the pinned phase, it is a Devil’s
staircase)
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@ EXAMPLE — DC DRIVING (SIMILAR PICTURE IN THE AC CASE!!) = @dhamics

Constant driving force F, 2D representation of the attractor

A
p -
mean Invariant circle at level p:
spacing * Depinned phase

* Not zero average speed

* Unique solution in the
attractor

No invariant circle at level p:
* Pinned phase
* Zero average speed

* Many metastable states

* Dynamics depends on

— > initial conditions
X — position (mod 1) 16




@ ERGODIC THEORETICAL INTERPRETATION OF RESULTS

|:> AC or DC force F(t):

Union of supports of Union of supports of Classical
physical* measures = invariant®* measures - attractor

* Asymptotics for a.e. * Asymptotics for * Asymptotics for all
time and a.e. initial a.e. time and a.e. times and all
condition initial condition initial conditions

e Circles + cantori e 2D set e oo-dim. set

* Generalized Aubry- * Characterization * Description
Mather sets as orbits of a 2D hopeless (?)

. Consists of twist-like map

synchronized orbits —— new results

: . o . 17
* space-time physical / space-time invariant
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[ Definition: Let u(t) be an orbit of (FK). We say that u(t) is synchronized, if ]

@ WHAT ARE SYNCHRONIZED ORBITS?

the set {S™u(t), t € R,n € Z}is totally ordered.

* Here (S™u(t)),, = u(t),+m, is the spatial shift

* Two configurations totally ordered = their graphs do not intersect

Theorem: The equation (FK) in both AC and DC cases for each mean
spacing p € R has a synchronized solution.

* Inthe DC case by Middleton (1992), Baesens, MacKay (1998), Qin
(2010, 2011)

* Inthe AC case Hu, Qin, Zheng (2005), Qin, S. SI. (2013)
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@ SYNCHRONIZED ORBITS ARE ATTRACTING

(Theorem: (S.Sl., 2014) In both AC and DC cases, depinned phase (for fixed )
mean spacing p € R :
* w-limit set for any initial condition® with mean spacing p € R consists of
synchronized solution
U J

Theorem: (S.Sl., 2014) In both AC and DC cases, pinned phase (for fixed mean
spacing p € R is locally stable.

"

* asymptotics defined in ergodic-theoretical sense (orbits in the closure observable for
positive density of times and spatial translates)

Complete description of the asymptotics: 2D dynamics as above + coarsening (see e.g.
Eckmann, Rougemont; dynamics of the real Ginzburg-Landau equation)
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@ APPLICATIONS

Problem

New tool available

DC: sharp estimate of the
unlocking transition

AC: sharp estimate of the
dynamical Aubry transition i

AC, DC: persistence of the sliding
regime for (sufficiently) irrational
mean spacing

AC, DC: Behavior close to the
pinning/depinning and dynamical
Aubry transition

AC, DC: Dependence of speed on
parameters

Speed of convergence to
synchronized solutions

Criteria for break-up of invariant
tori (Boyland, MacKay, Stark) —
,converse KAM”

KAM theory

Renormalization theory approach
developed for twist area-
preserving maps (?)

Various ergodic-theoretical tools

Further study of the key tool —
new Lyapunov functions on the
space of measures

20
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