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Dissipative dynamics of pulled (driven) Frenkel-Kontorovora models: 

OVERVIEW OF THE TALK 

Description of the model and known numerical observations  1 

2 

4 

3 

Applied AC or DC force F(t) 

The (at most) 2D representation of the attractor – theory and 
numerics  

Applications: new numerical algorithms to determine phase 
transitions 

Description of phase transitions and asymptotics  



THE THEORY APPLIES TO 1D, DRIVEN DISSIPATIVE DYNAMICS 

Overdamped, driven FK dynamics:  

• F(t) constant - DC dynamics 

• F(t) time-periodic - AC dynamics 

• V(x) – on-site (periodic) potential, e.g. V 𝑥 = 𝑘𝑠𝑖𝑛(2 𝜋𝑥) 

• W(x) – interaction potential, e.g. 𝑊 𝑥 − 𝑦 = (𝑥 − 𝑦)2/2 

(FK) 
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AC or DC forcing 



OTHER MODELS TO WHICH THE THEORY APPLIES 

The theory also applies to (not included in this talk) : 

• Damped FK dynamics, with sufficiently strong damping: 
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• Reaction-diffusion in 1D (f periodic in t,x): 

𝑑2𝑥𝑛
𝑑𝑡2
+ 𝛾
𝑑𝑥𝑛
𝑑𝑡
= −
𝜕𝐻 𝑥

𝜕𝑥𝑛
+ 𝐹(𝑡) 

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑡, 𝑥, 𝑢, 𝑢𝑥) 

• In particular, Burger’s equation: 

𝑢𝑡 = 𝑢𝑥𝑥 − 𝑢𝑢𝑥 

• Damped hyperbolic equation in 1D with sufficiently strong damping: 

𝑢𝑡𝑡 + 𝛾𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑡, 𝑥, 𝑢, 𝑢𝑥) 



• DNA unzipping (in replication and transcription) 

• Peyrard – Bishop – Dauxois model (Floria, Baesens, Gomez-Gardenez, 2006) 

• V – interaction between nucleotides; W – interaction between neighbouring pairs; 
F – unzipping force; y – the distance between nucleotide pairs 

• Other physical models: Charge density wave transport; Josephson junction arrays; 
dislocation dynamics in solids; in surface physics ...  

     EXAMPLES OF PHYSICAL MODELS 1 
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     NUMERICALLY OBSERVED BEHAVIOR – DC DRIVING 1 

F - constant 

Rigorously known: 

• „Depinning” („unlocking”) force typically 
non-zero 

• Depinning force and sliding speed 
depend on the mean spacing 

• Non-zero speed for mean spacing r: 
there exists unique „ordered” orbit 
(uniformly sliding state) 

spacing 

No / limited rigorous results: 

• Sharp estimates of depinning force? 

• Asymptotics for various initial conditions 
(covergence to the sliding solution?) 

• Behavior close to pinning/depinning 
(unlocking) transition? 

• Speed of convergence? 

Typical dependence of speed on force 
(source: Floria, Mazo, 1996) 

6 



     NUMERICALLY OBSERVED BEHAVIOR – AC DRIVING 1 

F(t) – time periodic 

Rigorously known: 

• There exist ordered (synchronized) orbits 
for any mean spacing (Qin, 2013) 

spacing 

No / limited rigorous results: 

• Rigorous explanation of „mode locking”? 

• Is the v(F) dependence a devil staircase? 

• Description of the „dynamical Aubry 
transition”? 

• Convergence to synchronized orbits / 
asymptotics for arbitrary initial 
conditions? 

• Speed of convergence? 

• Etc. 
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Typical dependence of speed on force for 
three FK models - different site potentials 
(source: Floria, Mazo, 1996) 



     MORE NUMERICS : AVERAGE SPEED VS. AVERAGE FORCE 1 
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DC driving: 

AC driving: 



     THE MATHEMATICAL BACKGROUND 2 

The Aubry-Mather theory  

• Representation of 
ground states of FK 
model as a twist map 

• Commensurations / 
discomensurations 

Poincare-Bendixson 
theorem for 1D reaction-
diffusion equations 

• Fiedler, Mallet-Paret, 
1989 

• Asymptotics for 
reaction-diffusion on 
bounded domains 
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Ergodic theory 

 

• SRB measures 

• Physical measures 

• Minimising measures 

Hamiltonian dyn. 

 

• KAM theory 

• Break-up of invariant tori 
(Converse KAM) 

• Renormalization theory 



     THE AUBRY – MATHER THEORY 2 

• Elementary: all equilibria (F=0, 
du/dt=0) characterized as orbits 
of a 2D twist area-preserving map 

• Aubry-Mather: existence of 
ground states for arbitrary mean 
spacing (=Aubry-Mather sets) 

• Ground states are ordered 

• Ground states lie on either 

            Invariant torus (circle)  

or 

Cantor set 

v 

v 

p 

 

x (position) 

Description of equilibria: Phase portrait of the 2D representation: 

spacing 
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     POINCARE-BENDIXSON THEOREM FOR REACTION- 
     DIFFUSION EQUATIONS 
2 

• Equation: reaction-diffusion in 1d on [0,1], periodic boundary conditions   

• Theorem (Fiedler, Mallet-Paret, 1989): The ω-limit set 𝜔(𝑢) for any u 
projects injectively to a compact 2D set  

• Similar theorem for FK model (Baesens, MacKay, 1998): For finite FK 
model with periodic boundary conditions 

• Key insight: the „intersection-counting” („lap-number”) function is a 
discrete Lyapunov function 
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     PHYSICAL SPACE-TIME MEASURES 2 
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• Physical (probability, invariant) measures: time averages of any 
observable on the basin of attraction converge to the spatial average 

• Known for uniformly hyperbolic, Axiom A systems: unique physical 
measure (SRB measure) 

• Adapted definition to our setting 

• Let 𝐾 ⊆ 𝑹𝒁 be a (compact) set of FK chain configurations (𝑢𝑛)𝑛∈𝒁  

Definition: We say that a time- and space-invariant (probability) measure 𝜇 
on 𝐾 is space-time physical, if for any 𝑢0 ∈ 𝐾, and any cont. function f on 𝐾,  

lim
𝒏→∞
lim
𝑇→∞

1

2𝑛𝑇
  𝑓 𝑆𝑚𝑢 𝑡 𝑑𝑡 =  𝑓 𝑢 𝑑𝜇(𝑢)

𝑛

𝑚=−𝑛

𝑇

0

 

Space-time average 
Expectation 

w.r. to physical 
measure 

= 



     THE MAIN RESULT: ATTRACTOR IS (AT MOST) 2D 2 
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Theorem (S.Sl., 2014): The attractor A for AC and DC dissipatively driven FK 
model is at most 2-dimensional. 

The injective projection is given with 𝜋: 𝐴→𝑅2, 

𝜋 𝑥𝑛 = (𝑥0, 𝑥1 − 𝑥0) 

Definition of the attractor – in an ergodic theoretical sense. 

Equivalent definitions of the attractor 

• Configurations „observable” for positive density of times and spatial 
translates, 

• Union of supports of all space-time invariant measures, 

• Configurations „observable” for positive space-time probability. 



     NUMERICS: 2D REPRESENTATIONS OF THE ATTRACTOR 2 

14 

2D representations of the attractor of a DC-driven standard FK model, with k=1.0. The DC force (left to right): 
F=0, 0.001, 0.005, 0.05. The same color corresponds to the same configuration and its time evolution. 



     WHAT IS A DYNAMICAL PHASE TRANSITION? 3 
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Confusion in the literature: how to recognize dynamical (Aubry) phase 
transition? 

• DC case „clear”: when the chain starts moving 

• AC case – unclear, speed vs. force dependency complex 

• We distinguish pinned vs. depinned phase (or locked vs. unlocked) 

• Pinned phase: part of the physical space asymptotically „off-limit” 

Theorem (S.Sl., 2014): The following characterizations of the depinned 
phase (for fixed mean spacing) are equivalent: 

• Projection of the attractor to the first coordinate covers the entire real 
line (in the pinned phase, it is a Cantor set) 

• The space-time invariant measure is unique 

• The modulation function is smooth (in the pinned phase, it is a Devil’s 
staircase) 



     EXAMPLE – DC DRIVING (SIMILAR PICTURE IN THE AC CASE!!) 3 

Constant driving force F, 2D representation of the attractor 

𝜌 - 
mean 

spacing 

𝑥 – position (mod 1) 

Invariant circle at level 𝝆: 

• Depinned phase 

• Not zero average speed 

• Unique solution in the 
attractor 

No invariant circle at level 𝝆: 

• Pinned phase 

• Zero average speed  

• Many metastable states 

• Dynamics depends on 
initial conditions 

v 

v 
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     ERGODIC THEORETICAL INTERPRETATION OF RESULTS 3 
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Classical 
attractor 

Union of supports of 
invariant* measures ⊂ 

• Asymptotics for 
a.e. time and a.e. 
initial condition 

• 2D set 

• Characterization 
as orbits of a 2D 
twist-like map 

 

• Asymptotics for all 
times and all 
initial conditions 

• ∞-dim. set 

• Description 
hopeless (?) 

⊂ 
Union of supports of 
physical* measures 

• Asymptotics for a.e. 
time and a.e. initial 
condition 

• Circles + cantori 

• Generalized Aubry-
Mather sets 

• Consists of 
synchronized orbits 

* space-time physical / space-time invariant 

AC or DC force F(t): 

new results 



      WHAT ARE SYNCHRONIZED ORBITS? 3 

Definition: Let u(t) be an orbit of (FK). We say that u(t) is synchronized, if 
the set {𝑆𝑛𝑢(𝑡), 𝑡 ∈ 𝑹, 𝑛 ∈ 𝒁} is totally ordered. 

• Here (𝑆𝑛𝑢(𝑡))𝑚 = 𝑢(𝑡)𝑛+𝑚 is the spatial shift 

• Two configurations totally ordered  = their graphs do not intersect 

Theorem: The equation (FK) in both AC and DC cases for each mean 
spacing 𝜌 ∈ 𝑹 has a synchronized solution. 

• In the DC case by Middleton (1992), Baesens, MacKay (1998), Qin 
(2010, 2011) 

• In the AC case Hu, Qin, Zheng (2005), Qin, S. Sl. (2013) 
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     SYNCHRONIZED ORBITS ARE ATTRACTING 3 

Theorem: (S.Sl., 2014) In both AC and DC cases, depinned phase (for fixed 
mean spacing 𝜌 ∈ 𝑹 : 
• ω-limit set for any initial condition* with mean spacing 𝜌 ∈ 𝑹 consists of 

synchronized solution 
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Theorem: (S.Sl., 2014) In both AC and DC cases, pinned phase (for fixed mean 
spacing 𝜌 ∈ 𝑹 is locally stable. 

* asymptotics defined in ergodic-theoretical sense (orbits in the closure observable for 
positive density of times and spatial translates)  

Complete description of the asymptotics: 2D dynamics as above + coarsening (see e.g. 
Eckmann, Rougemont; dynamics of the real Ginzburg-Landau equation) 



     APPLICATIONS 4 

20 

New tool available Problem 

• DC: sharp estimate of the 
unlocking transition 

• AC: sharp estimate of the 
dynamical Aubry transition 

• Criteria for break-up of invariant 
tori (Boyland, MacKay, Stark) – 
„Converse KAM” 

• AC, DC: persistence of the sliding 
regime for (sufficiently) irrational 
mean spacing 

• KAM theory 

• AC, DC: Behavior close to the 
pinning/depinning and dynamical 
Aubry transition 

• Renormalization theory approach 
developed for twist area-
preserving maps (?) 

• AC, DC: Dependence of speed on 
parameters  

• Various ergodic-theoretical tools 

• Speed of convergence to 
synchronized solutions 

• Further study of the key tool – 
new Lyapunov functions on the 
space of measures 
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