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Abstract. In this paper, we consider a compartmental SIRS epidemic model

with asymptomatic infection and seasonal succession, which is a periodic dis-
continuous differential system. The basic reproduction number R0 is defined

and evaluated directly for this model, and uniform persistence of the disease

and threshold dynamics are obtained. Specially, global dynamics of the mod-
el without seasonal force are studied. It is shown that the model has only a

disease-free equilibrium which is globally stable if R0 ≤ 1, and as R0 > 1

the disease-free equilibrium is unstable and there is an endemic equilibrium,
which is globally stable if the recovering rates of asymptomatic infectives and

symptomatic infectives are close. These theoretical results provide an intu-

itive basis for understanding that the asymptomatically infective individuals
and the seasonal disease transmission promote the evolution of the epidemic,

which allow us to predict the outcomes of control strategies during the course
of the epidemic.

1. Introduction. Since Kermack and McKendrick [13] proposed the classical de-
terministic compartmental model (called SIR model) to describe epidemic outbreaks
and spread, mathematical models have become important tools in analyzing the
spread and control of infectious diseases, see [1, 2, 5, 9, 11, 12, 20, 21, 27] and ref-
erences therein. The number of infected individuals used in these models is usually
calculated via data in the hospitals. However, some studies on influenza show that
some individuals of the population who are infected never develop symptoms, i.e.
being asymptomatically infective. The asymptomatically infected individuals will
not go to hospital but they can infect the susceptible by contact, then progress to
the recovered stage, see for instance [3, 14, 22]. Hence, using the data from hospitals
to mathematical models to assess the epidemic will underestimate infection risks.

On the other hand, seasonality is very common in ecological and human social
systems (cf. [26]). For example, variation patterns in climate are repeated every
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year, birds migrate according to the variation of season, opening and closing of
schools are almost periodic, and so on. These seasonal factors significantly influ-
ence the survival of pathogens in the environment, host behavior, and abundance
of vectors and non-human hosts. A number of papers have suggested that season-
ality plays an important role in epidemic outbreaks and the evolution of disease
transmissions, see [4, 6, 8, 9, 16, 17, 19, 21, 28]. However, it is still challenging to
understand the mechanisms of seasonality and their impacts on the dynamics of
infectious diseases.

Motivated by the above studies on asymptomatic infectivity or seasonality, we
develop a compartmental model with asymptomatic infectivity and seasonal fac-
tors in this paper. This model is a periodic discontinuous differential system. We
try to establish the theoretical analysis on the periodic discontinuous differential
systems and study the dynamics of the model. This will allow us to draw both
qualitative and quantitative conclusions on the effect of asymptomatic infectivity
and seasonality on the epidemic.

The rest of the paper is organized as follows. In section 2, we formulate the SIRS
model with asymptomatic infective and seasonal factors, then discuss the existence
and regularity of non-negative solutions for this model. In section 3, we define
the basic reproduction number R0 for the model, give the evaluation of R0 and
investigate the threshold dynamics of the model (or the uniformly persistent of the
disease). It is shown that the length of the season, the transmission rate and the
existence of asymptomatic infection affect the basic reproduction number R0. In
section 4, we study the global dynamics of the model ignoring seasonal factor. We
prove that there is a unique disease-free equilibrium and the disease always dies out
when R0 ≤ 1; while when R0 > 1 there is an endemic equilibrium which is global
stable if the recovering rates of asymptomatic infective and symptomatic infective
are close. A brief discussion is given in the last section.

2. Model formulation. In this section, we first extend the classic SIRS model to
a model which incorporates with the asymptomatic infective and seasonal features
of epidemics, and then study the regularity of solutions of the model.

Because there are asymptomatically infectious and symptomatically infectious
individuals in the evolution of epidemic, the whole population is divided into four
compartments: susceptible, asymptomatically infectious, symptomatically infec-
tious and recovered individuals. More precisely, we let S, Ia, Is and R denote
the numbers of individuals in the susceptible, asymptomatic, symptomatic and
recovered compartments, respectively, and N be the total population size. Let
R+ = [0,+∞), Z+ be the set of all nonnegative integers, and ω > 0 be given as the
period of the disease transmissions. In addition to the assumptions of the classical
SIRS model, we list the following assumptions on seasonal factors, asymptomatic
infectivity and symptomatic infectivity.

(A1) Due to the opening and closing of schools or migration of birds, each period
of the disease transmission is simply divided into two seasons with high and
low transmission rates, which are called high season J2 and low season J1,
respectively. The seasonality is described by a piecewise constant function
with high transmission rate β2 in J2 and low transmission rate β1 in J1,
respectively, where J1 = [mω,mω+ (1− θ)ω) and J2 = [mω+ (1− θ)ω, (m+
1)ω). Here m ∈ Z+, and 0 < θ < 1 which measures the fraction of the high
season to the whole infection cycle.
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(A2) There are two classes of infective individuals: asymptomatically infective ones
and symptomatically infective ones. Both of them are able to infect suscepti-
ble individuals by contact. A fraction µ of infective individuals proceeds to the
asymptomatically infective compartment and the remainder (i.e. a fraction
1 − µ of infective individuals) goes directly to the symptomatically infective
compartment. And the asymptomatically infective and symptomatically in-
fective individuals recover from disease at rate ra and rs, respectively.

(A3) The symptomatically infective individuals will get treatment in hospital or
be quarantined. Hence, the symptomatic infective individuals reduce their
contact rate by a fraction α.

Based on these assumptions, the classical SIRS model can be extended to the
following system

Ṡ(t) = dN(t)− dS(t)− β(t)S(t)(Ia(t) + αIs(t)) + σR(t),

İa(t) = µβ(t)S(t)(Ia(t) + αIs(t))− (d+ ra)Ia(t),

İs(t) = (1− µ)β(t)S(t)(Ia(t) + αIs(t))− (d+ rs)Is(t),

Ṙ(t) = raIa(t) + rsIs(t)− (d+ σ)R(t),

(2.1)

where N(t) = S(t) + Ia(t) + Is(t) + R(t), all parameters d, α, σ, µ, ra and rs are
nonnegative, and

β(t) =

 β1, t ∈ J1 = [mω,mω + (1− θ)ω),

β2, t ∈ J2 = [mω + (1− θ)ω, (m+ 1)ω).

Parameters β2 and β1 are the rates of contact transmission of the disease in high
season and low season respectively for which β2 ≥ β1 ≥ 0. Besides, d is both the
birth rate and death rate, α, 0 ≤ α ≤ 1, is the fraction of the symptomatically
infective individuals reducing their contact rate with susceptible, the fraction of
infective individuals becoming asymptomatically infective µ satisfies 0 ≤ µ ≤ 1,
parameter σ is the rate of recovered population loss of the immunity and reentering
the susceptible group, and ra and rs are the rates of asymptomatic infective and
symptomatic infective recovering with immunity, respectively. Note that the trans-
mission rate β(t) is a piecewise function or a step function. This idea has appeared
in some literatures such as [19, 24, 15, 10].

From the biological point of view, we focus on the solutions of system (2.1) with
initial conditions

S(0) = S0 ≥ 0, Ia(0) = Ia0 ≥ 0, Is(0) = Is0 ≥ 0, R(0) = R0 ≥ 0 (2.2)

in the first octant R4
+.

Note that

Ṅ(t) = Ṡ(t) + İa(t) + İs(t) + Ṙ(t) ≡ 0, t ∈ J1 or t ∈ J2.

Hence, N(t) = S0 + Ia0 + Is0 +R0, which is a constant for almost all t ∈ R+. Since
the total population does not change by the assumption, we let

S(t) + Ia(t) + Is(t) +R(t) ≡ N

for almost all t ∈ R+. Therefore, system (2.1) with the initial conditions (2.2) in
R4

+ can be reduced to
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Ṡ = (d+ σ)(N − S)− β(t)S(Ia + αIs)− σ(Ia + Is),

İa = µβ(t)S(Ia + αIs)− (d+ ra)Ia,

İs = (1− µ)β(t)S(Ia + αIs)− (d+ rs)Is,

S(0) = S0, Ia(0) = Ia0, Is(0) = Is0,

P0 = (S0, Ia0, Is0) ∈ D0,

(2.3)

where D0 ⊂ R3
+ and

D0 := {(S, Ia, Is)| S ≥ 0, Ia ≥ 0, Is ≥ 0, 0 ≤ S + Ia + Is ≤ N}. (2.4)

Clearly, the right hand side of system (2.3) is not continuous on the domain R+×D0.
We claim that the solution of system (2.3) exists globally on the interval R+ =
[0,+∞) and is unique.

Theorem 2.1. For any P0 ∈ D0, system (2.3) has a unique global solution ϕ(t, P0)
= (S(t, P0), Ia(t, P0), Is(t, P0)) in R+, which is continuous with respect to t and all
parameters of this system.

Moreover, ϕ(t, P0) ⊆ D0 for any t ∈ R+ and the solution ϕ(t, P0) is differentiable
with respect to P0, where some derivatives are one-sided if P0 is on the domain
boundary.

Proof. Assume that ϕ(t, P0) is a solution of system (2.3). We first consider the two
systems 

Ṡ = (d+ σ)(N − S)− βiS(Ia + αIs)− σ(Ia + Is),

İa = µβiS(Ia + αIs)− (d+ ra)Ia,

İs = (1− µ)βiS(Ia + αIs)− (d+ rs)Is,

S(t∗) = S∗, Ia(t∗) = Ia∗, Is(t∗) = Is∗,

P∗ = (S∗, Ia∗, Is∗) ∈ R3
+

(2.5)

in the domain R+ × R3
+, i = 1, 2, respectively.

It is clear that for each i the solution of system (2.5) exists and is unique on its
maximal interval of existence, and the solution of system (2.5) is differentiable with
respect to the initial value P∗ by the fundamental theory of ordinary differential
equations.

Note that the bounded closed set D0 in R3
+ is a positive compact invariant set

of system (2.5) since the vector field of system (2.5) on the boundary ∂D0 of D0 is
directed toward to the interior of D0 or lies on ∂D0, where

∂D0 ={(S, Ia, Is) : (S, Ia, Is) ∈ R3
+, S = 0, 0 ≤ Ia + Is ≤ N}

∪ {(S, Ia, Is) : (S, Ia, Is) ∈ R3
+, Is = 0, 0 ≤ S + Ia ≤ N}

∪ {(S, Ia, Is) : (S, Ia, Is) ∈ R3
+, Ia = 0, 0 ≤ S + Is ≤ N}

∪ {(S, Ia, Is) : (S, Ia, Is) ∈ R3
+, S + Is + Ia = N}.

Therefore, the solution of system (2.5) exists globally for any P∗ ∈ D0 ⊂ R3
+, and

these solutions are in D0 for all t > 0.
Let φi(t, t∗, P∗) for i = 1, 2 be the solution semiflow of the following system

Ṡ = (d+ σ)(N − S)− βiS(Ia + αIs)− σ(Ia + Is),

İa = µβiS(Ia + αIs)− (d+ ra)Ia,

İs = (1− µ)βiS(Ia + αIs)− (d+ rs)Is,

φi(t∗, t∗, P∗) = P∗, P∗ ∈ D0,

(2.6)



DYNAMICS OF EPIDEMIC MODELS 1411

respectively, that is, φi(t, t∗, P∗) = (S(t, t∗, P∗), Ia(t, t∗, P∗), Is(t, t∗, P∗)) for t ≥ t∗ is
the solution of system (2.6) with the initial condition φi(t∗, t∗, P∗) = (S∗, Ia∗, Is∗) ∈
D0, respectively.

It follows that the solution ϕ(t, P0) for t ≥ 0 of system (2.3) can be determined
uniquely by induction. For simplicity, we let sm = (m−1)ω and tm = sm+(1−θ)ω
for m ∈ Z+. Hence,

[0,∞) =

∞⋃
m=1

[sm, sm+1] =

∞⋃
m=1

([sm, tm] ∪ [tm, sm+1]),

and ϕ(t, P0) can be written as follows.

ϕ(t, P0) =



φ1(t, s1, P0) when t ∈ [s1, t1],

φ2(t, t1, φ1(t1, s1, P0)) when t ∈ [t1, s2],

...

φ1(t, sm, um) when t ∈ [sm, tm],

φ2(t, tm, vm) when t ∈ [tm, sm+1],

(2.7)

where um and vm are determined by letting u1 = P0, v1 = φ1(t1, s1, u1) and

um = φ2(sm, tm−1, vm−1), vm = φ1(tm, sm, um) for m ≥ 2.

This implies that the solution ϕ(t, P0) of system (2.3) exits globally in R+ and is
unique for any P0 ∈ D0, and it is continuous with respect to t and all parameters.

By the expression (2.7), it is easy to see that the solution ϕ(t, P0) lies in D0 for all
t ≥ 0 and ϕ(t, P0) is differentiable with respect to P0. The proof is completed.

Theorem 2.1 tells us that system (2.3) is ω-periodic with respect to t in R+×D0,
and it suffices to investigate the dynamics of its associated period map P on D0 for
the dynamics of system (2.3), where

P : D0 → D0,

P(P0) = ϕ(ω, P0) = φ2(ω, (1− θ)ω, φ1((1− θ)ω, 0, P0)),
(2.8)

which is continuous in D0.

3. Basic reproduction number and threshold dynamics. In epidemiology,
the basic reproduction number (or basic reproduction ratio) R0 is an importan-
t quantity, defined as the average number of secondary infections produced when
an infected individual is introduced into a host population where everyone is sus-
ceptible. It is often considered as the threshold quantity that determines whether
an infection can invade a new host population and persist. Detailedly speaking,
if R0 < 1, the disease dies out and the disease cannot invade the population; but
if R0 > 1, then the disease is established in the population. There have been
some successful approaches for the calculations of basic reproduction number for
different epidemic models. For example, Diekmann et al [7] and van den Driessche
and Watmough [23] presented general approaches of calculating R0 for autonomous
continuous epidemic models. And for periodic continuous epidemic models, Wang
and Zhao in [25] defined the basic reproduction number. To our knowledge, there
is no theoretic approach to calculate the basic reproduction number for periodic
discontinuous epidemic models such as system (2.3). In this section, we use the
idea and some notations given in [25] to define and calculate the basic reproduction
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numbers for system (2.3), and discuss the uniform persistence of the disease and
threshold dynamics.

We define X to be the set of all disease-free states of system (2.3), that is

X = {(S, Ia, Is) : 0 ≤ S ≤ N, Ia = Is = 0}.

Clearly, the disease-free subspace X is positively invariant for system (2.3). It can
be checked that the period map P(P0) in X has a unique fixed point at (N, 0, 0),
which is a unique disease-free equilibrium (N, 0, 0) of system (2.3), denoted by E0.
We now consider a population near the disease-free equilibrium E0.

For simplicity, we let x = (S, Ia, Is)
T , and for i = 1, 2 set

Fi =

 0 0 0
0 µβiN αµβiN
0 (1− µ)βiN α(1− µ)βiN

 :=

(
0 0
0 Fi

)
,

Vi =

 d+ σ βiN + σ αβiN + σ
0 d+ ra 0
0 0 d+ rs

 :=

(
d+ σ bi

0 V

)
.

Then the linearized system of (2.3) at E0 can be rewritten as

dx

dt
= (F(t)−V(t))x, (3.1)

where F(t) = χJ1(t)F1 + χJ2(t)F2 , V(t) = χJ1(t)V1 + χJ2(t)V2, and

χJi(t) =

{
1 as t ∈ Ji,
0 as t /∈ Ji.

System (3.1) is a piecewise continuous periodic linear system with period ω in
t ∈ R+. In order to determine the fate of a small number of infective individuals
introduced into a disease-free population, we first extend system (3.1) from t ∈
R+ to t ∈ R, and introduce some new notations. When t ∈ ∪+∞m=−∞(J1 ∪ J2) =

(−∞,+∞), we set I(t) = (Ia(t), Is(t))
T , and

F(t) = χJ1(t)F1 + χJ2(t)F2 =

(
µNβ(t) αµNβ(t)

(1− µ)Nβ(t) α(1− µ)Nβ(t)

)
,

where

β(t) =

{
β1, t ∈ J1 = [mω,mω + (1− θ)ω),
β2, t ∈ J2 = [mω + (1− θ)ω, (m+ 1)ω), m ∈ Z.

Clearly, F(t) is a 2 × 2 piecewise continuous periodic matrix with period ω in R,
and it is non-negative. And

−V =

(
−(d+ ra) 0

0 −(d+ rs)

)
,

which is cooperative in the sense that the off-diagonal elements of −V are non-
negative.

Let Y (t, s), t ≥ s, be the evolution operator of the linear system

dI(t)
dt

= −V I(t). (3.2)

Since V is a constant matrix, for each s ∈ R the matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V Y (t, s), t ≥ s, Y (s, s) = E2, (3.3)
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where E2 is a 2×2 identity matrix, and Y (t, s) = e−V (t−s). Hence, the monodromy
matrix Φ−V (t) of system (3.2) is Y (t, 0), that is,

Φ−V (t) = e−V t =

(
e−(d+ra)t 0
0 e−(d+rs)t

)
,

where d, ra and rs are positive numbers.
We denote ‖ · ‖1 the 1-norm of vectors and matrices. Thus, there exist K > 0

and κ > 0 such that

‖Y (t, s)‖1 ≤ Ke−κ(t−s), ∀t ≥ s, s ∈ R.

From the boundedness of F(t), i.e. ‖F(t)‖1 < K1, it follows that there exists a
constant K1 > 0 such that

‖Y (t, t− a)F(t− a)‖1 ≤ KK1e
−κa, ∀t ∈ R, a ∈ [0,+∞). (3.4)

We now consider the distribution of infected individuals in the periodic environ-
ment. Assume that I(s) is the initial distribution of infected individuals in infectious
compartments. Then F(s)I(s) is the distribution of new infections produced by the
infected individuals who were introduced at time s. Given t ≥ s, then Y (t, s)F(s)I(s)
is the distribution of those infected individuals who were newly infected at time s
and still remain in the infected compartments at time t. Thus, the integration of
this distribution from −∞ to t∫ t

−∞
Y (t, s)F(s)I(s)ds =

∫ ∞
0

Y (t, t− a)F(t− a)I(t− a)da

gives the distribution of cumulative new infections at time t produced by all those
infected individuals introduced at times earlier than t.

Let Cω = C(R,R2) be the ordered Banach space of ω-periodic continuous func-
tions from R to R2, which is equipped with the norm ‖·‖c,

‖I(s)‖c = max
s∈[0,ω]

‖I(s)‖1 ,

and the generating positive cone

C+
ω = {I(s) ∈ Cω : I(s) ≥ 0, s ∈ R}.

Define a linear operator L : Cω → Cω by

(LI)(t) =

∫ t

−∞
Y (t, s)F(s)I(s)ds =

∫ ∞
0

Y (t, t− a)F(t− a)I(t− a)da. (3.5)

It can be checked that the linear operator L is well defined.

Lemma 3.1. The operator L is positive, continuous and compact on Cω.

Proof. Since Y (t, s) = e−V (t−s) and F(t) is a nonnegative bounded matrix, we get
that L(C+

ω ) ⊂ C+
ω . This implies that the linear operator L is positive.

We now prove the continuity of L. For each t ∈ R, we have

‖LI(t)‖1 =

∥∥∥∥∫ ∞
0

Y (t, t− a)F(t− a)I(t− a)da

∥∥∥∥
1

=

∥∥∥∥∥∥
∞∑
j=0

∫ (j+1)ω

jω

Y (t, t− a)F(t− a)I(t− a)da

∥∥∥∥∥∥
1
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≤
∞∑
j=0

∫ (j+1)ω

jω

‖Y (t, t− a)F(t− a)I(t− a)‖1da

≤
∞∑
j=0

∫ (j+1)ω

jω

KK1e
−κa‖I(t− a)‖1da

≤ ωKK1

∞∑
j=0

e−κωj · ‖I‖c

by (3.4). Hence,

‖LI(t)‖c = max
t∈[0,ω]

‖LI(t)‖1 ≤ ωKK1

∞∑
j=0

e−κωj · ‖I‖c,

which implies that L is continuous and uniformly bounded since
∑∞
j=0 e

−κωj is
convergent.

In the following we prove the compactness of L. We first claim that LI(t) is
equicontinuous. Consider I(t) ∈ Cω and ∀t1, t2 ∈ [0, ω] with t1 < t2. Then

‖LI(t2)− LI(t1)‖1 =

∥∥∥∥∫ t2

−∞
Y (t2, s)F(s)I(s)ds−

∫ t1

−∞
Y (t1, s)F(s)I(s)ds

∥∥∥∥
1

=

∥∥∥∥∫ t2

−∞
(Y (t2, s)− Y (t1, s))F(s)I(s)ds+

∫ t2

t1

Y (t1, s)F(s)I(s)ds
∥∥∥∥
1

≤
∫ t2

−∞
‖Y (t2, s)− Y (t1, s)‖1‖F(s)‖1‖I(s)‖1ds+

∫ t2

t1

‖Y (t1, s)‖1‖F(s)‖1‖I(s)‖1ds

≤
∫ ω

−∞
‖Y (t2, s)− Y (t1, s)‖1‖F(s)‖1‖I(s)‖1ds+

∫ t2

t1

Ke−κ(t1−s)‖F(s)‖1‖I(s)‖1ds

≤ ‖e−V t2 − e−V t1‖1
0∑

i=−∞

∫ (i+1)ω

iω

K1‖eV s‖1‖I(s)‖1ds+
∫ t2

t1

Ke−κ(t1−s)K1‖I(s)‖1ds

≤
0∑

i=−∞

ed̃1(i+1)ω ·K1‖I‖c‖e−V t2 − e−V t1‖1 +KK1e
κω‖I‖c(t2 − t1),

where d̃1 = max{d+ ra, d+ rs}.
Notice that

∑0
i=−∞ eN(i+1) is convergent and e−V t is continuous on [0, ω]. Thus,

if {I(t)} is bounded, for ∀ε > 0 there exists a δ > 0 such that ‖LI(t2)−LI(t1)‖c < ε
as |t2 − t1| < δ. This implies that {(LI)(t)} are equicontinuous. According to
Ascoli-Arzela theorem, we know that L is compact. The proof of this lemma is
completed.

L is called the next infection operator, and the spectral radius of L can be defined
as the basic reproduction number (or ratio)

R0 := ρ(L) (3.6)

of system (2.3).
Following [25], we consider how to calculate R0 and whether the basic repro-

duction ratio (or number) R0 characterizes the threshold of disease invasion, i.e.,
the disease-free periodic solution (N, 0, 0) of system (2.3) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

It is clear that the disease-free periodic solution (N, 0, 0) of system (2.3) is locally
asymptotically stable if all characteristic multipliers of periodic system (3.1) are
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less than one, and it is unstable if at least one of the characteristic multipliers of
periodic system (3.1) is greater than one. By straightforward calculation, we obtain
that the characteristic multipliers of periodic system (3.1) consist of e−(d+σ)ω and
the eigenvalues of the following matrix

ΦF−V (ω) = e(F2−V )θωe(F1−V )(1−θ)ω,

where

Fi − V =

(
µβiN − (d+ ra) αµβiN

(1− µ)βiN α(1− µ)βiN − (d+ rs)

)
, i = 1, 2.

Note that e−(d+σ)ω < 1 because d+ σ > 0. Therefore, all characteristic multipliers
of periodic system (3.1) are less than one if and only if the largest eigenvalue of
ΦF−V (ω), denoted by ρ(ΦF−V (ω)), is less than one (i.e. ρ(ΦF−V (ω)) < 1), and at
least one of the characteristic multipliers of periodic system (3.1) is greater than
one if and only if ρ(ΦF−V (ω)) > 1, here ρ(ΦF−V (ω)) is called the spectral radius of
matrix ΦF−V (ω).

On the other hand, it is easy to check that all assumptions (A2)-(A7) in [25] are
valid for system (3.1) except the assumption (A1). Using the notations in [25], we

define a matrix Vε = V − εP , here P =

(
1 1
1 1

)
and ε is a very small positive

number. Thus, −Vε is cooperative and irreducible for each t ∈ R. Let Yε(t, s) be
the evolution operator of the linear system (3.3) with V replaced by Vε. For some
small ε0, as ε ∈ [0, ε0) we can define the linear operator Lε by replacing Y (t, s) in
(3.5) with Yε(t, s) such that the operator Lε is positive, continuous and compact on
Cω. Let Rε0 := ρ(Lε) for ε ∈ [0, ε0).

By the proof of Theorem 2.1, we know that the solutions of the following system

dx

dt
= (F(t)− Vε)x (3.7)

are continuous with respect to all parameters. Thus,

lim
ε→0

ΦF−Vε(ω) = ΦF−V (ω),

where ΦF−Vε(ω) is the monodromy matrix of system (3.7), and ΦF−V (ω) is the
monodromy matrix of system (3.7) as ε = 0.

According to the continuity of the spectrum of matrices, we have

lim
ε→0

ρ(ΦF−Vε
(ω)) = ρ(ΦF−V (ω)).

From Lemma 3.1, we use the similar arguments in [25] to the two linear operator
Lε and L, and obtain that

lim
ε→0
Rε0 = R0.

We now easily follow the arguments in [25] to characterize R0. Let Wλ(t, s), t ≥ s
be the fundamental solution matrix of the following linear periodic system

dw

dt
=

(
−V +

F(t)

λ

)
w,

where the parameter λ ∈ (0,+∞). Consider an equation of λ

ρ(Wλ(ω, 0)) = 1. (3.8)

Then R0 can be calculated as follows.
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Theorem 3.2. (i) If equation (3.8) has a solution λ0 > 0, then λ0 is an eigen-
value of L, which implies that R0 > 0;

(ii) If R0 > 0, then λ = R0 is the only solution of equation (3.8);
(iii) R0 = 0 if and only if ρ(Wλ(ω, 0)) < 1 for all positive λ.

Note that ρ(W1(ω, 0)) = ρ(ΦF−V (ω)). Using similar arguments in [25], we can
prove that the basic reproduction ratio (or number) R0 can characterize the thresh-
old of disease invasion.

Theorem 3.3. (i) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1;
(ii) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1;

(iii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.
Hence, the disease-free periodic solution (N, 0, 0) of system (2.3) is locally asymp-

totically stable if R0 < 1, and it is unstable if R0 > 1.

To save space, the proofs of the above theorems are omitted. From Theorem 3.3,
we can see that R0 is a threshold parameter for local stability of the disease-free
periodic solution (N, 0, 0). We next show that R0 is also a threshold parameter for
dynamics of system (2.3) in D0.

Theorem 3.4. When R0 < 1, solutions (S(t), Ia(t), Is(t)) of system (2.3) with
initial points in D0 satisfies

lim
t→+∞

(S(t), Ia(t), Is(t)) = (N, 0, 0).

And the disease-free periodic solution (N, 0, 0) of system (2.3) is globally asymptot-
ically stable in D0.

Proof. In the invariant pyramid D0 as shown in (2.4), we consider a subsystem by
the last two equations of system (2.3)

İa(t) = µβ(t)S(Ia + αIs)− (d+ ra)Ia

≤ µβ(t)N(Ia + αIs)− (d+ ra)Ia,

İs(t) = (1− µ)β(t)S(Ia + αIs)− (d+ rs)Is

≤ (1− µ)β(t)N(Ia + αIs)− (d+ rs)Is.

(3.9)

Thus, the auxiliary system of (3.9) is{
İa(t) = µβ(t)N(Ia + αIs)− (d+ ra)Ia,

İs(t) = (1− µ)β(t)N(Ia + αIs)− (d+ rs)Is,
(3.10)

which is a periodic linear discontinuous system with period ω. The periodic map
associated with system (3.10) is defined by ΦF−V (ω), which is a linear continuous
map.

When R0 < 1, we have ρ(ΦF−V (ω)) < 1, which implies that (0, 0) is a globally
asymptotically stable solution of system (3.10).

Note that systems (3.9) and (3.10) are cooperative. Using the similar arguments
in [18], we can prove that the comparison principle holds. Hence,

lim
t→+∞

(Ia(t), Is(t)) = (0, 0).

So, for arbitrarily small constant ε > 0, there exists T > 0 such that Ia(t)+αIs(t) <
ε as t > T . From the first equation of system (2.3), we have

Ṡ = dN − dS − β(t)S(Ia + αIs) + σ(N − S − Ia − Is)
> dN − dS − β2Sε.
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Therefore, lim inft→+∞ S(t) ≥ dN
d+β2ε

. Let ε→ 0, we have

lim inf
t→+∞

S(t) ≥ N.

On the other hand, S(t) ≤ N in D0, which admits

lim
t→+∞

S(t) = N.

In summary, we have limt→+∞(S(t), Ia(t), Is(t)) = (N, 0, 0). Moreover, from Theo-
rem 3.3 we know that (N, 0, 0) of system (2.3) is globally asymptotically stable.

In the following, we show that the disease is uniformly persistent when R0 > 1.

Theorem 3.5. If R0 > 1, 0 < µ < 1 and 0 < αβ1, then there exists a constant
δ0 > 0 such that every solution (S(t), Ia(t), Is(t)) of system (2.3) with initial values
in D0 satisfies

lim inf
t→+∞

Ia(t) ≥ δ0, lim inf
t→+∞

Is(t) ≥ δ0.

Proof. Since system (2.3) is ω-periodic with respect to t in R+ × D0, it suffices to
investigate the dynamics of its associated period map P defined by (2.8) on D0 for
the dynamics of system (2.3), where the map P is continuous. Clearly, P(D0) ⊂ D0.
Define

X0 = {(S, Ia, Is) ∈ D0 : Ia > 0, Is > 0}, ∂X0 = D0\X0.

Set

M∂ = {P0 ∈ ∂X0 : Pk(P0) ∈ ∂X0,∀k ≥ 0},

which is a positive invariant set of P in ∂X0. We claim

M∂ = {(S, 0, 0) : 0 ≤ S ≤ N}. (3.11)

In fact, {(S, 0, 0) : 0 ≤ S ≤ N} ⊂ M∂ by (2.8). On the other hand, for any
P0 ∈ ∂X0 \ {(S, 0, 0) : 0 ≤ S ≤ N}, that is, either Ia0 = 0, Is0 > 0, S0 ≥ 0 or
Ia0 > 0, Is0 = 0, S0 ≥ 0. In the case Ia0 = 0, Is0 > 0, S0 > 0 (resp. Ia0 > 0, Is0 =
0, S0 > 0), we calculate by the last two equations of system (2.3) and obtain that

I ′a(0) = µαβ(0)S(0)Is(0) > 0 (resp. I ′s(0) = (1− µ)β(0)S(0)Ia(0) > 0),

if 0 < µ < 1 and 0 < αβ1. This implies that Pk0(P0) 6∈ ∂X0\{(S, 0, 0) : 0 ≤ S ≤ N}
for some k0 ≥ 0 since the subsystem by the last two equations of system (2.3) is
cooperative. If S(0) = 0, Ia0 = 0, Is0 > 0 (or S(0) = 0, Ia0 > 0, Is0 = 0), then
S′(0) = (d + σ)N − σIs(0) > 0 (or S′(0) = (d + σ)N − σIa(0) > 0), which leads
that Pk1(P0) 6∈ ∂X0 \ {(S, 0, 0) : 0 ≤ S ≤ N} for some k1 ≥ 0. Therefore, (3.11) is
proved and M∂ is the maximal compact invariant set of P in ∂X0.

Note that E0(N, 0, 0) is the unique fixed point of P in M∂ and it is an attractor
of P in M∂ by the first equation of (2.3). Since R0 > 1, the stable set W s(E0) of
E0 satisfies that W s(E0) ∩X0 = ∅.

Applying [29, Theorem 1.3.1], we obtain that P is uniformly persistent with
respect to (X0, ∂X0). Moreover, from [29, Theorem 3.1.1], it can see that the
conclusion of this theorem is true. The proof is completed.



1418 YILEI TANG, DONGMEI XIAO, WEINIAN ZHANG AND DI ZHU

4. Global dynamics of system (2.3) without seasonal force. In this section,
we study the effects of asymptomatic infection on the dynamics of system (2.3) if
there are not seasonal factors, that is, β1 = β2 = β. Then system (2.3) becomes

Ṡ = (d+ σ)(N − S)− βS(Ia + αIs)− σ(Ia + Is),

İa = µβS(Ia + αIs)− (d+ ra)Ia,

İs = (1− µ)βS(Ia + αIs)− (d+ rs)Is

(4.1)

in the domain R3
+.

By the formula (3.6), we let β1 = β2 and obtain the basic reproduction number
R0 of system (4.1) as follows.

R0 = βN

(
µ

d+ ra
+
α(1− µ)

d+ rs

)
, (4.2)

which is consistent with the number calculated using the approach of basic repro-
duction number in [7] and [23].

From the expression (4.2), we can see that there is still the risks of infectious dis-
ease outbreaks due to the existence of asymptomatic infection even if all symptomat-
ically infective individuals have been quarantined, that is, α = 0. This provides an
intuitive basis for understanding that the asymptomatically infective individuals
promote the evolution of epidemic.

In the following we study the dynamics of system (4.1). By a straightforward
calculation, we obtain the existence of equilibria for system (4.1).

Lemma 4.1. System (4.1) has the following equilibria in R3
+.

(i) If R0 ≤ 1, then system (4.1) has a unique equilibrium, which is the disease-free
equilibrium E0(N, 0, 0).

(ii) If R0 > 1 and 0 < µ < 1, then system (4.1) has two equilibria: the disease-free
equilibrium E0(N, 0, 0) and the endemic equilibrium E1(S∗, I∗a , I

∗
s ) in the inte-

rior of D0, where S∗ = N
R0
, I∗a = µ(d+σ)(d+rs)N

(d+ra)(d+rs)+σ(d+µrs)+σra(1−µ) (1−
1
R0

), I∗s =
(1−µ)(d+ra)
µ(d+rs)

I∗a .

(iii) If R0 > 1 and µ = 0, then system (4.1) has two equilibria: the disease-free
equilibrium E0(N, 0, 0) and the asymptomatic-free equilibrium E2(S∗2 , 0, I

∗
s2),

where S∗2 = N
R0
, I∗s2 = d+σ

d+σ+rs
N(1− 1

R0
).

(iv) If R0 > 1 and µ = 1, the system (4.1) has two equilibria: the disease-free
equilibrium E0(N, 0, 0) and the symptomatic-free equilibrium E3(S∗3 , I

∗
a3, 0),

where S∗3 = N
R0
, I∗a3 = d+σ

d+σ+ra
N(1− 1

R0
).

We now discuss the local stability and topological classification of these equilibria
in R3

+, respectively. We first study the disease-free equilibrium E0(N, 0, 0) and have
the following lemma.

Lemma 4.2. The disease-free equilibrium E0(N, 0, 0) of system (4.1) in R3
+ is

asymptotically stable if R0 < 1; E0(N, 0, 0) is a saddle-node with one dimensional
center manifold and two dimensional stable manifold if R0 = 1; and E0(N, 0, 0) is a
saddle with two dimensional stable manifold and one dimensional unstable manifold
if R0 > 1.

Proof. A routine computation shows that the characteristic polynomial of system
(4.1) at E0 is

f1(λ) = (λ+ d+ σ)(λ2 − a1λ+ a0), (4.3)
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where a0 = (d+ ra)(d+ rs)(1−R0),

a1 = (d+ ra)(βN
µ

d+ ra
− 1) + (d+ rs)(αβN

1− µ
d+ rs

− 1).

It is clear that −(d + σ) < 0 is always one root of (4.3). We consider three cases,
R0 < 1, R0 = 1 and R0 > 1, to discuss the other roots of (4.3).

If R0 < 1, then a1 < 0 and a0 > 0 by βN µ
d+ra

< R0 and βN α(1−µ)
d+rs

< R0. Thus,

three roots of (4.3) have negative real parts, which leads to the local asymptotical
stability of the disease-free equilibrium E0.

If R0 = 1, then a0 = 0 and a1 < 0. Hence, the characteristic equation f1(λ) = 0
has three roots: λ1 = −(d + σ) < 0, λ2 = a1 < 0 and λ3 = 0. For calculating the
associated eigenvectors vi of λi, i = 1, 2, 3, we consider J(E0) with respect to µ in
three cases: (i) 0 < µ < 1, (ii) µ = 0 and (iii) µ = 1, and we can obtain that E0

is a saddle-node with one dimensional center manifold and two dimensional stable
manifold by tedious calculations of normal form.

Summarized the above analysis, we complete the proof of this lemma.

From Lemma 4.1 and Lemma 4.2, we can see that system (4.1) undergoes saddle-
node bifurcation in a small neighborhood of E0(N, 0, 0) as R0 increases passing
through R0 = 1.

About the endemic equilibria, we have the following local stability.

Lemma 4.3. The endemic equilibrium E1(S∗, I∗a , I
∗
s ) of system (4.1) is asymp-

totically stable if R0 > 1 and 0 < µ < 1; the asymptomatic-free equilibrium
E2(S∗2 , 0, I

∗
s2) of system (4.1) is asymptotically stable if R0 > 1 and µ = 0; and

the symptomatic-free equilibrium E3(S∗3 , I
∗
a3, 0) of system (4.1) is asymptotically

stable if R0 > 1 and µ = 1.

Proof. Either µ = 0 or µ = 1, it is easy to compute the eigenvalues of the Jacobian
matrix of system (4.1) at E2 or E3, respectively, and find that all eigenvalues have
negative real parts. Hence, E2(S∗2 , 0, I

∗
s2) or E3(S∗3 , I

∗
a3, 0) is asymptotically stable

if R0 > 1, respectively.
After here we only prove that E1(S∗, I∗a , I

∗
s ) is asymptotically stable if R0 > 1

and 0 < µ < 1. To make the calculation easier, we use the change of variables

S =
(d+ rs)

µβ
Ŝ, Ia =

(d+ rs)

β
Îa, Is =

(d+ rs)

β
Îs, dt =

dτ

(d+ rs)
,

which reduces system (4.1) into the following system,
dS
dτ = N1 − d1S − σ1Ia − σ1Is − S(Ia + αIs),
dIa
dτ = −rIa + S(Ia + αIs),
dIs
dτ = −Is + µ1S(Ia + αIs),

(4.4)

where

N1 = N(d+ σ)µβ/(d+ rs)
2, d1 = (d+ σ)/(d+ rs),

σ1 = σµ/(d+ rs), r = (d+ ra)/(d+ rs), µ1 = (1− µ)/µ

and for simplicity we denote Ŝ, Îa, Îs by S, Ia, Is respectively.
When R0 > 1, the disease-free equilibrium E0(N, 0, 0) and endemic equilibri-

um E1(S∗, I∗a , I
∗
s ) of system (4.1) are transformed into the disease-free equilibrium
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Ê0(N1/d1, 0, 0) and endemic equilibrium Ê1(Ŝ∗, Î∗a , Î
∗
s ) of system (4.4) respectively,

where

Ŝ∗ =
N1/d1

R̂0

, Î∗a =
N1

σ1 + rσ1µ1 + r
(1− 1

R̂0

), Î∗s = µ1rI
∗
a .

Notice that R̂0 := N1

d1
( 1
r + αµ1) > 1 if and only if R0 > 1.

The characteristic equation of system (4.4) at Ê1 is

f2(λ) = det(λI − J(Ê1)) = λ3 + ξ2λ
2 + ξ1λ+ ξ0,

where

ξ2 = {σ1 + rσ1µ1 + r + r2µ1ασ1 + r3µ2
1ασ1 + r3µ1α+ d1σ1µ1rα+ d1σ1µ

2
1r

2α

+N1 + d1σ1 + d1rσ1µ1 + 2N1µ1rα+ r2µ2
1α

2N1}/{(σ1 + rσ1µ1 + r)(rµ1α+ 1)},

ξ1 = d1(1 + r2µ1α)/(rµ1α+ 1) + (σ1µ1 + 1 + r + σ1)(rµ1α+ 1)Î∗a ,

ξ0 = N1µ1rα+N1 − rd1 = rd1(R̂0 − 1).

It can be seen that all coefficients ξj of polynomial f2(λ) are positive if R̂0 > 1,
where j = 0, 1, 2. Moreover, we claim that ξ2ξ1 − ξ0 > 0. In fact,

ξ2ξ1 − ξ0 = c0 + c1Î
∗
a + c2(Î∗a)2,

where

c0 =
d1(1 + r2µ1α)(r2µ1α+ d1µ1rα+ 1 + d1)

(rµ1α+ 1)2
,

c1 = d1µ
2
1rασ1 + r3µ1α+ r2µ1ασ1 + 2d1r

2µ1α+ d1σ1µ1rα+ σ1µ1

+ d1σ1µ1 + 1 + 2d1 + d1σ1 + r(d1 − σ1µ1) + µ1rα(d1 − σ1),

c2 = (rµ1α+ 1)2(σ1µ1 + 1 + r + σ1).

It is easy to see that c0 > 0 and c2 > 0. Note that d1 − σ1µ1 = d+σµ
d+rs

> 0 and

d1 − σ1 = d+σ(1−µ)
d+rs

> 0 since 0 < µ < 1. This implies that c1 > 0. Moreover,

Î∗a > 0 yields that ξ2ξ1 − ξ0 > 0 and what we claimed is proved.
By the Routh-Hurwitz Criterion, we know that all eigenvalues of the character-

istic polynomial f2(λ) have negative real parts. Thus, the endemic equilibrium Ê1

of system (4.4) is asymptotically stable. This leads that the endemic equilibrium
E1(S∗, I∗a , I

∗
s ) of system (4.1) is also asymptotically stable.

From Lemma 4.2 and Lemma 4.3, we can see that R0 is the threshold quantity
of local dynamics of system (4.1) in R3

+. By Theorem 2.1, we only need to consider
system (4.1) for its global dynamics in D0. The following theorems will show that
R0 is also the threshold quantity of global dynamics of system (4.1) in D0.

Theorem 4.4. If R0 ≤ 1, then the disease-free equilibrium E0(N, 0, 0) of system
(4.1) is globally asymptotically stable in D0.

The proof of this theorem can be finished by constructing a Liapunov function

L(S, Ia, Is) = Ia(t) +
d+ ra
d+ rs

αIs(t)

in D0. For the sake of simplicity, we omit the details.
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Theorem 4.5. If R0 > 1 and µ = 0 (resp. µ = 1), then E2(S∗2 , 0, I
∗
s2) (resp.

E3(S∗3 , I
∗
a3, 0)) attracts all orbits of system (4.1) in D0 except both E0(N, 0, 0) and

a positive orbit γ in its two dimensional stable manifold, where

γ = {(S, Ia, Is) ∈ D0 : Ia = 0, Is = 0, 0 < S < N}.

Proof. We first prove the case that R0 > 1 and µ = 0. When µ = 0, system (4.1)
becomes 

Ṡ = (d+ σ)(N − S)− βS(Ia + αIs)− σ(Ia + Is),

İa = −(d+ ra)Ia,

İs = βS(Ia + αIs)− (d+ rs)Is.

(4.5)

It is clear that limt→+∞ Ia(t) = 0. Hence, the limit system of system (4.5) in D0 is{
Ṡ = (d+ σ)(N − S)− αβSIs − σIs,
İs = αβSIs − (d+ rs)Is

(4.6)

in D1 = {(S, Is) : 0 ≤ S ≤ N, 0 ≤ Is ≤ N}, which has two equilibria: (N, 0)
and (S∗2 , I

∗
s2). Equilibrium (N, 0) is a saddle and (S∗2 , I

∗
s2) is locally asymptotically

stable if R0 > 1.
In the following we prove that (S∗2 , I

∗
s2) attracts all orbits of system (4.6) in D1

except both (N, 0) and its one dimensional stable manifold.
Let x = S + σ

αβ and y = Is. Then system (4.6) becomes{
ẋ = (d+ σ)(N + σ

αβ )− (d+ σ)x− αβxy,
ẏ = αβxy − (d+ rs + σ)y.

(4.7)

Hence, (x0, y0) = (S∗2 + σ
αβ , I

∗
s2) is the unique positive equilibrium of system (4.7)

if R0 > 1. Consider the Liapunov function of system (4.7)

V (x, y) =
1

2
(x− x0)2 + x0

(
y − y0 − y0 ln

y

y0

)
in D̃1 = {(x, y) : σ

αβ ≤ x ≤ N + σ
αβ , 0 ≤ y ≤ N}. It is clear that V (x, y) ≥ 0 and

V (x, y) = 0 if and only if x = x0 and y = y0 in D̃1. And

dV (x(t), y(t))

dt
|(4.7) = −(x− x0)2(αβy + d+ σ) ≤ 0

in D̃1.
By LaSalle’s Invariance Principle, we know that (x0, y0) attracts all orbits of

system (4.7) in D̃1 except both equilibrium (N + σ
αβ , 0) and its one dimensional

stable manifold {(x, y) : y = 0, 0 < x < N + σ
αβ }. This leads to the conclusion,

E2(S∗2 , 0, I
∗
s2) attracts all orbits of system (4.1) in D0 except both E0(N, 0, 0) and

a positive orbit γ if R0 > 1 and µ = 0.
Using the similar arguments, we can prove that E3(S∗3 , I

∗
a3, 0) attracts all orbits

of system (4.1) in D0 except both E0(N, 0, 0) and a positive orbit γ if R0 > 1 and
µ = 1.

Theorem 4.6. If R0 > 1, 0 < µ < 1 and ra = rs, then the endemic equilibrium
E1(S∗, I∗a , I

∗
s ) attracts all orbits of system (4.1) in D0 except E0(N, 0, 0).
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Proof. Let I = Ia+αIs, N1 = S+Ia+Is. Then under the assumption ra = rs = r,
system (4.1) in D0 can be written as

Ṡ = (d+ σ)N − σN1 − dS − βSI,
İ = µ̃SI − (d+ r)I,

Ṅ1 = (d+ σ)N − (d+ r + σ)N1 + rS

(4.8)

in D̃0 := {(S, I,N1)| S ≥ 0, I ≥ 0, N ≥ N1 ≥ 0}, where µ̃ = (µ+ α(1− µ))β.

Thus, equilibrium E1(S∗, I∗a , I
∗
s ) of system (4.1) becomes equilibrium Ẽ1(S∗, I∗,

N∗1 ) of system (4.8) and Ẽ1 is locally asymptotically stable, where I∗ = I∗a +
αI∗s , N

∗
1 = S∗ + I∗a + I∗s .

Applying a typical approach of Liapunov functions, we define

g(x) = x− 1− lnx,

and construct a Liapunov function of system (4.8)

V1(S, I,N1) =
ν1
2

(S − S∗)2 + ν2I
∗g(

I

I∗
) +

ν3
2

(N1 −N∗1 )2,

where arbitrary constants ν1 > 0, ν2 = ν1βS
∗/µ̃ and ν3 = ν1σ/r. Note that

g(x) ≥ g(1) = 0 for all x > 0 and the global minimum g(x) = 0 is attained if and
only if x = 1. Thus, V1(S, I,N1) ≥ 0 and V1(S, I,N1) = 0 if and only if S = S∗,

I = I∗ and N1 = N∗1 in D̃0.
The derivative of V1 along the trajectories of system (4.8) is

dV1(S, I,N1)

dt
=− ν1dS∗2(x− 1)2 − ν3(d+ r + σ)N∗1

2(z − 1)2

− ν1βS∗2I∗y(x− 1)2 ≤ 0,

where x = S
S∗ , y = I

I∗ , z = N1

N∗
1

.

Note that the only compact invariant subset of the set {(S, I,N1) : dV1(S,I,N1)
dt =

0} is the singleton Ẽ1(S∗, I∗, N∗1 ) in D̃0. Consequently, we can conclude that
E1(S∗, I∗a , I

∗
s ) is globally asymptotically stable and attracts all orbits of system

(4.1) in D0 except E0(N, 0, 0).

From Theorem (4.6) and the continuity of solutions with respect to parameters
ra and rs, we obtain the following results.

Theorem 4.7. If R0 > 1 and 0 < µ < 1, then the endemic equilibrium E1(S∗, I∗a ,
I∗s ) is globally asymptotical stable in the interior of D0 for 0 < |rs − ra| � 1.

5. Discussion. In this paper, we established a compartmental SIRS epidemic mod-
el with asymptomatic infection and seasonal factors. In our model, we divided the
period of the disease transmission into two seasons. In fact, it can be divided in-
to n seasons for any given n ∈ Z+. Compared with continuous periodic systems,
our piecewise continuous periodic model can provide a straightforward method to
evaluate the basic reproduction number R0, that is to calculate the spectral radius
of the matrix ΦF−V (ω) = e(F2−V )θωe(F1−V )(1−θ)ω. It is shown that the length of
the season, the transmission rate and the existence of asymptomatic infective affect
the basic reproduction number R0, and there is still the risks of infectious disease
outbreaks due to the existence of asymptomatic infection even if all symptomat-
ically infective individuals have been quarantined, that is, α = 0. This provides
an intuitive basis for understanding that the asymptomatically infective individuals
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and the disease seasonal transmission promote the evolution of the epidemic. And
theoretical dynamics of the model allow us to predict outcomes of control strategies
during the course of the epidemic.
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