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Isochronous center problem for time-reversible
cubic systems

XINGWU CHEN

Department of Mathematics, Sichuan University
Chengdu, Sichuan 610064, China

xingwu.chen@hotmail.com
http://math.scu.edu.cn

Problems of center and isochronicity are important for investigation of qualita-
tive properties of planar differential systems. Some nice results were obtained
in the 1960’s and 1970’s and at present these problems are once again attracting
considerable interet(see [1] and references therein). Many works have been done
for quadratic, cubic, quartic or quintic systems with homogeneous nonlinearities,
Kolmogorov systems, Liénard type systems and Hamiltonian systems.
For time-reversible cubic systems some sufficient conditons for the origin to be
an isochronous center were obtained in [2-5]. Using the Darboux linearization
method in [6], we give necessary and sufficient conditions for the complexfied
system to be linearizable and, hence, obtain necessary and sufficient conditions
for the origin of time-reversible cubic systems to be isochronous. Therefore, the
isochronous center problem of time-reversible cubic systems is solved completely.

References and Literature for Further Reading

[1] J. Chavarriga, M. Sabatini, Qual. Theory Dyn. Syst. 1 (1999) 1-70.

[2] L. Cairó, J. Chavarriga, J. Giné, J. Llibre, Comput. Math. Appl. 38 (1999) 39-53.

[3] J. Chavarriga, I. A. Garcı́a, J. Giné, Appl. Math. Comput. 121 (2001) 129-145.

[4] A. R. Chouikha, V. G. Romanovski, X. Chen, J. Phys. A 40 (2007) 2313-2327.

[5] J. Giné, V. G. Romanovski, J. Phys. A 42 (2009) 225206(15pp).

[6] X. Chen, V. G. Romanovski, J. Math. Anal. Appl. 362 (2010) 438-449.



Integrability of cubic differential systems with
algebraic invariant curves

DUMITRU V. COZMA

Department of Physics and Mathematics
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dcozma@gmail.com
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Consider the cubic system of differential equations

ẋ = y + ax2 + cxy + fy2 + kx3 +mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x+ gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y),
(1)

where P (x, y), Q(x, y) ∈ R[x, y] are co-prime polynomials. The origin O(0, 0) is a
singular point of a center or a focus type for (1), i.e. a weak focus. The problem
arises of distinguishing between a centre and a focus (the problem of the centre).

In this talk we discuss the difficulty of this problem and present the results con-
cerning the relation between integrability, invariant algebraic curves and Lia-
punov quantities. The problem of the centre is investigated for (1) with lines
and conics as the invariants.

References and Literature for Further Reading

[1] V. V. Amel’kin, N. A. Lukashevich, A. P. Sadovsky. Non-linear oscillations in
the systems of second order. Belarusian University Press, Minsk, 1982.

[2] D. V. Cozma, A. S. Şubă, NoDEA 2, no 1. (1995), 21–34.

[3] D. V. Cozma, A. S. Şubă, Scientific Annals of the ”Al.I.Cuza” University. Math-
ematics. XLIV (1998), 517–530.

[4] D. V. Cozma, NoDEA 16, no 2 (2009), 213–234.

[5] D. Cox, J. Little, D. O’Shea. Ideals, Varieties, and Algorithms. New York:
Springer-Verlag, 1992.



[6] V. G. Romanovski and D. S. Shafer, The center and cyclicity problems: a compu-
tational algebra approach. Boston, Basel, Berlin: Birkhäuser, 2009.

[7] A. S. Şubă, D. V. Cozma, Qualitative Theory of Dynamical Systems 6, no. 1
(2005) 45–58.



Integrability of a planar multiparameter system
of ODEs near a degenerated stationary point

ALEXANDER D. BRUNO1 and VICTOR F. EDNERAL2

1 Keldysh Institute for Applied Mathematics of RAS
Miusskaya Sq. 4, Moscow, 125047, Russia

abruno@keldysh.ru

2 Skobeltsyn Institute of Nuclear Physics of
Lomonosov Moscow State University
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We consider an autonomous system of ordinary differential equations, which is
resolved with respect to derivatives

ẋ =− y3 − b x3 y + (a0 x
5 + a1 x

2y2),

ẏ =(1/b)x2 y2 + x5 + (b0 x
4y + b1 x y

3).
(1)

This system is degenerated at the stationary point x = y = 0.

We say that the system (1) is locally integrable in a neighborhoodU of the stationary
point X = X0 if it has in U the sufficient number m of first integrals of the form

aj(X)/bj(X), j = 1, . . . ,m,

where functions aj(X) and bj(X) are analytic in U . Otherwise we call the system
(1) locally non-integrable in this neighborhood. It is said that a planar (n = 2) sys-
tem is locally analytically integrable if it admits in U a first integral .

For studying the local integrability of equation (1) near a degenerate stationary
point we use an approach based on Power Geometry and on the computation of
the resonant normal form [1-3]. We found the complete set of necessary condi-
tions on parameters of the system for which the system is locally integrable near a
degenerate stationary point [4,5]. The set of parameters satisfying the conditions
consists of four two-parameter subsets in the 5-parameter space. For all such sub-
sets, we found global first integrals of the system. So we found also the sufficient
conditions of integrability (1).



References and Literature for Further Reading

[1] A.D. Bruno, Local Methods in Nonlinear Differential Equations. Berlin:
Springer-Verlag, 1989.

[2] A.D. Bruno, Power Geometry in Algebraic and Differential Equations. Amster-
dam: Elsevier Science, 2000.

[3] A.D. Bruno, V.F. Edneral. Doklady Mathem. 79 (2009), no. 1, 48–52.

[4] A.D. Bruno, V.F. Edneral. Zapiski Nauchnykh Seminarov POMI. 373, 34–47,
2009 (Russian).

[5] A.D. Bruno, V.F. Edneral. Proceedings of the CASC 2009. Ed. by Gerdt et al.,
Springer-Verlag series: LNCS 5743, 45–53, 2009.



Integrability conditions for complex systems with
homogeneous quintic nonlinearities

BRIGITA FERČEC1, XINGWU CHEN1,2

VALERY G. ROMANOVSKI1

1 CAMTP - Center for Applied Mathematics and Theoretical Physics
University of Maribor, Krekova 2

SI-2000 Maribor, Slovenia
http://www.camtp.uni-mb.si
2 Department of Mathematics

Sichuan University, Chengdu, Sichuan 610064, China
E-mail addresses: brigita.fercec@gmail.com,

xingwu.chen@hotmail.com, valery.romanovsky@uni-mb.si

The problem of integrability of systems of differential equations is one of central
problems in the theory of ODE’s. Although integrability is a rare phenomena
and a generic system is not integrable, integrable systems are important in study-
ing various mathematical models, since often perturbations of integrable systems
exhibit rich picture of bifurcations.

If we try to study the local integrability (the so-called center problem [1,3]) for the
system

ẋ = x− a40x
5 − a31x

4y − a22x
3y2 − a13x

2y3 − a04xy
4 − a−15y

5,

ẏ = −y + b5,−1x
5 + b40x

4y + b31x
3y2 + b22x

2y3 + b13xy
4 + b04y

5,
(1)

where x, y, aij, bji ∈ C, then it turns out the computations involved to the deter-
mination of the necessary conditions of integrability for the full family (1) are so
heavy that they cannot be completed even using powerful computers and com-
puter algebra systems. Thus, it is reasonable to study some subfamilies of system
(1). Recently the center conditions for the subfamily of (1), with a−15 = b5,−1 = 0,
called the Lotka-Volterra system, have been obtained in [2].

We study the local integrability of the system

ẋ = x− a40x
5 − a31x

4y − a22x
3y2 − a04xy

4 − y5,

ẏ = −y + x5 + b40x
4y + b22x

2y3 + b13xy
4 + b04y

5.



The necessary conditions for local integrability of the system are obtained. The
sufficiency of some of these conditions is proved.

References and Literature for Further Reading

[1] C. Christopher and C. Rousseau, Nondegenerate linearizable centres of
complex planar quadratic and symmetric cubic systems in C2, Publ. Mat.
45 (2001), 95–123.

[2] J. Gine and V. G. Romanovski, Integrability conditions for Lotka-Volterra
planar complex quintic systems, Nonlinear Analysis: Real World Applications,
11 (2010) 2100-2105.

[3] V . G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A
Computational Algebra Approach, Birkhäuser, Boston, 2009.



Consistency of Finite-Difference Approximations to
Systems of PDEs and Related Symbolic Computation

VLADIMIR P. GERDT

Laboratory of Information Technologies
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141980 Dubna, Russia
gerdt@jinr.ru

http://compalg.jinr.ru/CAGroup/Gerdt/

In this talk we present the results obtained in collaboration with Yu.A.Blinkov
and D.Robertz on computer algebra application to study consistency of finite-
difference approximations (FDAs) to systems of partial differential equations
(PDEs) of the form f1 = · · · = fp = 0. Here F := {f1, . . . , fp} is a set of partial
differential polynomials over the field of rational functions with rational coeffi-
cients. For orthogonal and uniform solution grids by combining the finite vol-
ume method with the difference elimination one can algorithmically generate [1]
a FDA f̃1 = · · · = f̃p = 0 to the initial differential system. Provided with a discrete
version of the boundary or/and initial value conditions, the FDA yields a finite
difference scheme. To provide convergence of a numerical solution of the finite
difference scheme to the exact solution to the differential equations when the grid
steps go to zero the scheme has to be consistent [2].

We strengthen the generally accepted concept of equation-wise consistency (e-
consistency) of the difference equations as approximation to the differential ones.
Instead, we suggest a notion of s-consistency (strong consistency) as the consis-
tency of any difference consequence of the polynomial set F̃ := {f̃ , . . . , f̃p} with
a differential consequence of F . In the case of linear PDEs s-consistency admits
algorithmic verification [3] via a Gröbner or involutive basis of the difference
ideal 〈F̃ 〉. In doing so, the consistency verification algorithm uses also a differ-
ential Gröbner or involutive basis of the ideal generated by the initial PDE sys-
tem. In the last case the involutive basis is obtained by completion of system
to involution. By applying the Maple packages Janet and LDA (abbreviation for
Linear Difference Algebra) [4] implementing author’s involutive algorithm for
constructing Janet bases for ideals generated by linear differential and difference
polynomials we analyze some examples of finite difference approximations to
linear PDEs, including those which are e-consistent and s-inconsistent. We also



found an example of e-consistent and s-inconsistent nonlinear finite-difference
scheme for the Navier-Stokes equation system [5] describing fluid dynamics.

In accordance to the brilliant Lax-Richtmyer equivalence theorem [2] proved first
for scalar linear PDEs and extended to some scalar nonlinear equations, a con-
sistent FDA to a PDE, when the last admits a well-posed initial value (Cauchy)
problem, converges if and only if it is stable. Thus, in practice, the consistency
check has to be applied to the discrete form of the differential equations admit-
ting well-posedness of the Cauchy problem. Unlike scalar PDE for a system of
PDEs this requires its completion to involution [6] prior to discretizing. For linear
PDEs the completion to involution is fully algorithmic. However, by a simple ex-
ample of overdetermined linear PDE system we show that it can be nontrivial to
find an s-consistent finite-difference scheme for the involutive form of the input
differential system.

Generally, a nonlinear PDE system does not admit its completion to involution.
Instead, one can split the system into a finitely many involutive subsystems with
disjoint set of solutions. Being involutive every subsystem admits well-posedness
of Cauchy problem [7], and can be discretized together with the corresponding
boundary or/and initial value conditions. The detailed description of the com-
bined algorithm for the splitting and completion to involution given in [8]. Its
application will be illustrated in the talk by a simple example.

References and Literature for Further Reading

[1] V.P. Gerdt, Yu.A. Blinkov and V.V. Mozzhilkin. Symmetry, Integrability
and Geometry: Methods and Applications (SIGMA) 2 (2006) 051, 26 pages.
arXiv:math.RA/0605334

[2] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations,
2nd Edition. SIAM, Philadelphia, 2004.

[3] V.P. Gerdt, D. Robertz. Proceedings of ISSAC 2010, ACM Press, 2010, to
appear.
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[5] V.P. Gerdt and Yu.A. Blinkov. LNCS 5743 (2009), 94–105.

[6] W.M. Seiler. Involution: The Formal Theory of Differential Equations and its Ap-
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24, Springer, 2010.

[7] V.P. Gerdt. ”Zapiski Nauchnykh Seminarov POMI” 373 (2009) 94–103; J. Math.
Sciences (2010), to appear.

[8] T. Bächler, V. Gerdt, M. Lange-Hegermann and D. Robertz. LNCS, (2010), to
appear.



On Hopf bifurcations of piecewise planar
Hamiltonian systems

JUNMIN YANG, MAOAN HAN, WENZHANG HUANG
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In this paper we consider a piecewise Hamiltonian system of the form

ẋ = Hy, ẏ = −Hx, x 6= 0, (1)

where

H(x, y) =

{
H+(x, y), x > 0,
H−(x, y), x < 0,

and H±(x, y) ∈ Cω with H±(0, 0) = 0. Let H±(0, y) = λ±
(
y2 +H±

1 (y) +H±
2 (y)

)
where λ± > 0, and

H±
1 (y) =

k±∑
j=1

h±j y
2j+1, H±

2 (y) =
l±∑

j=1

r±j y
2j+2, l± = k± or k± − 1.

One of our main results can be stated as follows.
Theorem Let k0 = min{k+, k−}, l = max{l+, l−}. Then for any ε0 > 0 there are
r±j ∈ (−ε0, ε0) for 1 ≤ j ≤ l± and h±j ∈ (−ε0, ε0) for 1 ≤ j ≤ k± such that the
system (1) has at least k0 + l − 1 small amplitude limit cycles near the origin sur-
rounding the focus at the origin. Further, there are at most [(degH+

0 −1)(degH−
0 −

1)− 2]/2 limit cycles which surround the origin.

References and Literature for Further Reading

[1] B. Coll , A. Gasull, R. Prohens, J. Math, Anal.Appl. 253 (2001) 671-690.

[2] M. Han, W. Zhang, J. Diff. Equat. 248 (2010), 2399-2416.

[3] X. Liu, M. Han, Int. J. Bifur. and Chaos. 19 (2009), 2401-2405.



Use of orthogonal polynomials in discrete
mathematics
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Orthogonal polynomials were developed in the late 19th century from a study
of continued fractions by Chebyshev and were pursued by Markov, Stieltjes and
by a few other mathematicians. Since then, applications have been developed in
many areas of mathematics and physics. In our talk we will concentrate on their
applications in discrete mathematics. For example, we show how to use them to
improve efficient implementations of cryptosystems based on finite fields and in
particular on elliptic curves. Most finite objects of sufficient regularity are closely
related to certain distance-regular graphs, which can be in turn treated as combi-
natorial interpretations of certain orthogonal polynomials. We will exploit these
connections and finally, we show that the determinant of a Töplitz matrix can be
written as a product of two determinants of approximately half the size of the
original one.

References and Literature for Further Reading

[1] A. Jurišić, Antipodal Covers. Ph.D. Thesis, University of Waterloo (1995).
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Combin. 12 (2000), 163–197.
[4] A. Jurišić and J. Koolen, A Local Approach to 1-Homogeneous Graphs, De-

signs, Codes and Cryptography 21 (2000) 127–147.
[5] A. Jurišić, A. E. Brouwer and J. H. Koolen, Characterization of the Patterson
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Symbolic computation and shape changing soliton
solutions of certain higher order nonlinear

Schrödinger equations

LOUIS KAVITHA1,2, NARAYANAN AKILA1,
ARIVAZHAGAN PRABHU1 AND DHANARAJ GOPI3

1Department of Physics, Periyar University, Salem-636 011, India
2The Abdus Salam International Centre for Theoretical Physics,

Trieste, Italy
3Department of Chemistry, Periyar University, Salem-636 011, India

louiskavitha@yahoo.co.in

In magnetic materials, nonlinearity can possibly support intrinsic localized wave
modes that occur due to interaction between nearest neighbour atoms. Partic-
ularly, the dynamics of one-dimensional Heisenberg ferromagnetic spin chain
with higher order physically significant and mathematically complicated mag-
netic interactions can be mapped to the nonlinear partial differential equations
(NLPDE) namely higher order nonlinear Schrödinger (NLS) equations. We in-
voke the modified extended tangent hyperbolic function method to solve the
integro-differential inhomogeneous higher order NLS equations with the aid of
symbolic computation for a variety of competing nonlinear inhomogeneities. We
construct a series of exact travelling wave solutions with distinct structure suc-
cessfully for each type of nonlinear inhomogeneity using symbolic computation.
The obtained solution is in the form of soliton, solitary and periodic solutions and
some of them exhibit shape changing property which gives useful insight into the
physical aspect of magnetization reversal.
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Many problems in applied mathematics (e.g. control theory, mathematical physics,
optimization, etc.) concern various type of inequalities involving polynomials
in noncommuting variables. Two most frequently used notions of positivity are
given by the Löwner order (i.e., via positive semidefiniteness) or via the trace. In
this talk we shall briefly explain the theoretical background and present NCSOS-
tools, our Matlab toolbox for

(1) symbolic computation; and

(2) constructing and solving sum of squares programs

for polynomials in noncommuting variables.

References and Literature for Further Reading

[1] K. Cafuta, I. Klep, J. Povh: NCSOStools: a computer algebra system for
symbolic and numerical computation with noncommutative polynomials,
http://ncsostools.fis.unm.si

[2] J.W. Helton: “Positive” noncommutative polynomials are sums of squares,
Ann. of Math. (2) 156 (2002), 675–694.

[3] J.W. Helton, M. de Oliveira, R.L. Miller, M. Stankus: NCAlgebra: A Math-
ematica package for doing non commuting algebra, http://www.math.
ucsd.edu/∼ncalg/

[4] I. Klep, M. Schweighofer: Sums of Hermitian squares and the BMV conjec-
ture, J. Stat. Phys 133 (2008), 739–760.

http://ncsostools.fis.unm.si
http://ncsostools.fis.unm.si
http://ncsostools.fis.unm.si
http://www.math.ucsd.edu/~ncalg/
http://www.math.ucsd.edu/~ncalg/


[5] I. Klep, J. Povh: Semidefinite programming and sums of hermitian squares
of noncommutative polynomials, J. Pure Appl. Algebra 214 (2010), 740–749.

[6] I. Klep, M. Schweighofer: Connes’ embedding conjecture and sums of Her-
mitian squares, Adv. Math. 217 (2008), 1816–1837.



Technology and the Yin&Yang of Teaching and
Learning Mathematics

BERNHARD KUTZLER

ACDCA - Austrian Center for Didactics of Computer Algebra
Linz, Austria

b.kutzler@aon.at
http://www.acdca.ac.at

We develop a model comprising six teaching and learning archetypes and use
this model to look at the various roles that technology, in particular computer
algebra systems (CAS), can play for each.
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Let R be a commutative ring K[x1, . . . , xn] over a field K = C, and D = D(R) be
the n-th Weyl algebra, that is an associative K-algebra, generated by {x1, . . . , xn,
∂1, . . . , ∂n} subject to relations ∂jxi = xi∂j + δij ∀ 1 ≤ i, j ≤ n. A short overview
of the properties of Weyl algebras and a sketch on Gröbner bases theory for them
will be given. Indeed, Weyl algebra is the algebra of linear partial differential
operators with polynomial coefficients.

How to compute a (possibly smallest) system of PDE’s with polynomial coeffi-
cients, such that f ∈ R is a solution of such system? Since R is finitely presented
D(R)-module with the natural action xi•p = xi·p, ∂i•p = ∂p

∂xi
, we get the answer by

computing (using Gröbner bases) a left ideal AnnD(R)f = {a ∈ D(R) | a • f = 0}.

We can compute the annihilator of fα for any concrete α ∈ C as before. D-module
theory allows us to compute the annihilator of f s for symbolic s and, moreover,
s itself appears in the annihilator AnnD(R)[s]f

s ⊂ D(R)[s] = D(R) ⊗K[s] polyno-
mially.

As an application, an algorithm to compute the explicit D(R)-module structure
of the localization K[x]F for F = {f i | i ≥ 0} ⊂ R will be demonstrated.

J. Bernstein proved in 1972, that for a polynomial f ∈ R there exist an operator
P (s) ∈ D(R)[s] and a monic polynomial b(s) ∈ K[s], such that for any s the
equality

Pf (s) • f s+1 = bf (s) · f s

holds. bf (s) is called the Bernstein-Sato polynomial of f . The famous theorem
of Kashiwara states, that all roots of bf (s) are rational numbers. Moreover, −1
is always a root. The integer roots of Bernstein-Sato polynomial are of big im-
portance in many applications. For instance, if the hypersurface, defined by f
is smooth, one can easily show that bf (s) = s + 1. Otherwise bf (s) might be



very nontrivial and its computation very challenging. We show, how to com-
pute AnnD(R)[s]f

s, bf (s) and Pf (s) effectively. In practice, these computations are
quite challenging to any computer algebra system. Some important applications
of D-modules will be discussed and accompanied by nontrivial live examples,
computed with the SINGULAR:PLURAL’s package for D-modules. In particular,
we sketch the construction of a generalization of a Bernstein-Sato polynomial to
the case of an affine variety.
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Università di Trieste

Via Valerio 12/1
34127 Trieste, Italy

logar@units.it

A binomial ideal I is an ideal of the polynomial ring K[x1, . . . , xn] which is gener-
ated by binomials. In [2], following the results of [5], we gave a correspondence
between saturated binomial ideals of K[x1, . . . , xn] and submodules of Zn and we
showed that it is possible to construct a theory of Gröbner bases for submodules
of Zn. As a consequence, we see that it is possible to follow alternative strategies
for the effective computation of Gröbner bases of submodules of Zn (and hence
of binomial ideals) which avoid the use of Buchberger algorithm. In this talk we
want to analyze in more details the possible techniques which allows to compute
Gröbner bases and in particular we show that the problem is reconducted to the
problem of computing minimal elements in suitable subsets of partially ordered
lattices.
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Generalized quadrangleGQ(s, t) is a geometry of points and lines such that every
line has s + 1 points, every point is on t + 1 lines (with s > 0, t > 0) and for
any antiflag (P, y) there is the unique line z containing P and intersecting y. A
hyperoval of GQ(s, t) is regular subgraph of degree t+ 1 without triangles.

Consider locally GQ(s, t)-graphs. Locally GQ(2, t)-graphs are classified in [1].
The classification of locally GQ(3, t)-graphs is finished in [2].

The case s > 3 is very difficult. Amply regular locally GQ(4, 2)-graphs are clas-
sified in [3]. In this talk we discuss the problem of description of amply regular
locally GQ(t, t)-graphs for t ∈ {4, 5}. Every GQ(4, 4) is isomorphic to the ckassi-
cal quadrangle W (4). Every known GQ(5, 5) is isomorphic to the W (4) or other
ckassical quadrangle Q4(5).

Let Γ be a locally GQ(s, t)-graphs. Then for every two vertices u,w at distance 2 a
subgraph Γ(u)∩ Γ(w) is a hyperoval. A classification of hyperovals in known ck-
assical quadrangle W (4), W (5) and Q4(5) was obtained by computer calculations
in GAP.

Theorem 1. Amply regular locally GQ(4, 4)-graph does not exist.

Theorem 2. Let Γ be a connected amply regular locally GQ(5, 5)-graph. Then µ ∈
{20, 26, 30, 52} and one of the following holds:
(1) d(Γ) = 2, Γ has parameters (532, 156, 30, 52) and eigenvalues 4,−26 of multiplicities
455, 76;
(2) d(Γ) = 4 and µ = 20;
(3) d(Γ) = 3.

Corollary. Let Γ be a connected amply regular locally GQ(5, 5)-graph, in which for
every vertex a the subgraph Γ(a) is W (5) or Q4(5). Then d(Γ) = 2 and Γ is locally
W (5)-graph with parameters (532, 156, 30, 52).



For the vertex set S of the graph Γ we set Γ(S) = ∩a∈S(Γ(a) − S). A graph Γ is
called t-izoregular, if for every i ≤ t and for every i-vertex subset S the number
|Γ(S)| is depend only from isomorphic type of subgraph induced by S. A graph
on v vertices is called absolute izoregular, if it is (v − 1)-izoregular. t-izoregular
graph Γ is called exactly t-izoregular, if it is not (t + 1)-izoregular. Cameron [4]
proved that every 5-izoregular graph Γ is absolute izoregular and is isomorphic
pentagon, 3 × 3-grid, complete multipartite graph Kn×n or its complement. Fur-
ther every exactly 4-izoregular graph is pseudogeometric for pGr(2r, 2r

3+3r2−1)
or its complement. Let Izo(r) be a pseudogeometric graph for pGr(2r, 2r

3 + 3r2−
1). For r = 1 we have the point graph of GQ(2, 4), and for r = 2 we have
MacLaughlin graph.

Hypothesis A. A graph Izo(r) for r > 2 does not exist.

For every vertex a of a graph Izo(r) the subgraph Γ(a) is pseudogeometric for
pGr−1(2r − 1, r3 + r2 − r − 1). Makhnev [5] proved that pseudogeometric graph
for pGr−1(2r− 1, r3 + r2 − r− 1) does not exist for r = 3, so Hypothesis A is valid
for r = 3. In this talk we consider Izo(4).

Theorem 3. The following hold:
(1) if Γ is strongly regular graph with parameters (3159, 1408, 532, 704), a is a vertex of
Γ and Σ = Γ(a), then every 6-clique of Σ contains in some 8-clique of Σ;
(2) if Σ is strongly regular graph with parameters (1408, 532, 156, 228), in which every
6-every 6-clique contains in some 8-clique, then for every two adjacent vertices b, c of Σ
the subgraph [b] ∩ [c] is a point graph of GQ(5, 5).

Proposition. Let Λ be a strongly regular locally GQ(5, 5)-graph with parameters (532,
156, 30, 52). Then Λ has not vertex a with Λ(a) isomorphic to the point graph of W (5)
or Q4(5).

Corollary. A strongly regular graph with parameters (3159, 1408, 532, 704) (graph
Izo(4)) does not exist, if fore some 3-clique {a, b, c} of Γ the subgraph Γ({a, b, c}) is
isomorphic to W (5) or Q4(5).
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1. Basic notions on three-dimensional projective space
The study of line congruences has been very popular in the turn of two last cen-
turies, it is still investigated all over the world (see, e.g., [1]-[7]). In this paper
we deal with congruences in a real projective space of dimension 3, P3. The nat-
ural identification of a point, b, in this space is the sequence of four real num-
bers, at least one of them different from 0, and its natural identifier is written as
(b1 : b2 : b3 : b4), the numbers b1, b2, b3, b4 are called the homogeneous coordinates
of b. We say that b = (b1 : b2 : b3 : b4) is a regular (or common, usual) point,
or simply a point, if b4 6= 0; otherwise we say that b is a point in the infinity.
The natural representation of a point b in the standard Cartesian space R3, is the
point (

b1
b4
,
b2
b4
,
b3
b4

)
.

The natural representation of a point (b1 : b2 : b3 : 0) in R3 is the vector [b1, b2, b3]
T .

This representation makes that a point in the infinity is also called a direction.

In P3 any two point different by a scalar are identical; for any b, c ∈ P3 we write
b ≡ c iff there exists a nonzero number λ such that b = λ · c, and λ is called an
inhomogenity multiplier.

Any curve in P3 can be described by the set of four equations in one variable. The
formula p(t) = (1 : t : t2 : t3), where t is the parameter running from ∞ to +∞,
defines the spatial curve in P3. In appropriately chosen coordinate system this
formula describes the cubic curve. We work within such coordinate system, we
denote this curve by the letter K and we refer to K as to the standard curve.

A line congruence is defined as a two-parameter family of lines in P3. In this
paper we deal with the (1, 3)-congruence in P3, i.e. the line congruence of order



1 and of class 3; it says that we focus on any line congruence such that 1) there
is exactly one line that passes through an arbitrary point of P3, 2) in any plane P2

there are exactly 3 lines belonging to the line congruence at hand.

A line cutting the given curve at exactly two points is called a bisecant of this
curve.

Lets take two distinct values t1, t2. They produce two distinct points T1 := K(t1),
T2 := K(t2) sitting on the curve K. It is well-known (see, e.g. [3]) that the straight
line T1T2, i.e., the line passing through points T1 and T2, is the bisecant of K.

2. Cross-ratio of four numbers and four points
Let a, b, c, d be real numbers. The cross-ratio of the four (a, b, c, d) is defined to be
the number

(a, b ; c, d) :=
a− c

a− d
· b− d

b− c
,

if all numbers are different. Otherwise, the cross-ratio of the four (a, b, c, d) is
defined as follows: if a = c or b = d, then (a, b ; c, d) := 0; if a = b or c = d, then
(a, b; c, d) := 1; if a = d or b = c, then (a, b ; c, d) := ∞.

Given four points can produce at most six different values of their cross-ratios,
namely λ, 1/λ, 1 − λ, 1/(1 − λ), (1 − λ)/λ and λ/(1 − λ). The cross-ratio λ =
(a, b ; c, d) = −1 is called harmonic. Now the number d is said to be a harmonic
conjugate of c with respect to the pair (a, b). All cross-ratios different form -1 are
called anharmonic.

A cross-ratio of four collinear points, A, B, C, D, is defined by the same formula
as that of four numbers, but now a, b, c and d stand for the number identifying
these points in the local coordinate system; usually, a − b is the signed distance
between points A and B. As in the number case, it is denoted by (A,B ;C,D).

3. Coordinates of the point M
Let’s take a point on K, namely the point A = K(a) = (1 : a : a2 : a3), and a point
B = (b1 : b2 : b3 : b4) /∈ K such that the line AB is not a bisecant of K. Next, let’s
take an arbitrary point M = M(t) = (m1 : m2 : m3 : m4) on AB. We discuss the
line congruence of order 1, so there exists [5] exactly one bisecant of K passing
by M . Lets denote the points, at which this bisecant crosses K, by T1 := K(t1),
T2 := K(t2). There exist reals α, β such that M ≡ α · T1 + β · T2 and α2 + β2 > 0.
Therefore % ·M = α · T1 + β · T2, where % is the inhomogenity multiplier. It can
be taken % = 1 and from the system of equations we obtain t1 = (s +

√
∆1)/2,

t2 = (s −
√

∆1)/2, where the sum s := t1 + t2 and the product p := t1 · t2 express
by formulas

s =
m1 ·m4 −m2 ·m3

m1 ·m3 −m2
2

, p =
m2 ·m4 −m2

3

m1 ·m3 −m2
2

and ∆1 := s2 − 4p.

4. Finding the fourth point completing given three points to a given cross-ratio



The point M we obtained above is the point where the bisecant T1T2 and the
straight line AB 6= T1T2 meet. Now we look for a point X which lays on T1T2

and completes the triple (T1, T2,M) in such a way that the four points, T1, T2,
M , X , have their cross-ratio equal to a given real λ = −1. Since there is no
forced the order of this four, so, in general, there can be two such points. For X
such that (T1, T2;M,X) = λ, as well as in the case (T1, T2;X,M) = 1/λ, we have
% ·X = −2 · ψ, where the vector ψ = ψ(M) depends on the linear combination of
the products of the form mi ·mj ·mk, where i, j, k ∈ {1, 2, 3, 4}.

Taking into account the parametric representation of the line AB, M = A · u+B,
we state that the components of the vector ψ = ψ(A,B) are polynomials of second
degree in the variable u.

The curve governed by the equation % · X = −2 · ψ is called (a, b)-curve (adjoint
to K) and its natural representation in R3 is

(x, y, z) =

(
r1(u)

r4(u)
,
r2(u)

r4(u)
,
r3(u)

r4(u)

)
,

where rj(u) are the polynomials mentioned above.

5. Image of a straight line in P3

The formula % ·X = −2 · ψ reveals that the set of all points X produced when M
runs the line AB is an algebraic curve in P3 of the second degree. In consequence,
in R3 it is a rational curve: each parametric relation in its natural representation
is a quotient of polynomials of the degree at most 2.

Using Dervive 5, the computer algebra system from Texas Instruments, Inc.(USA),
we find, by the analysis of the projections of concrete curve on basic planes Oxy,
Oxz andOyz in R3, that allX’s form a conic: if r4(u) > 0 for all u, then we have an
ellipse; if r4(u) has one zero, then we have a parabola; if r4(u) = 0 for two distinct
values of u, then we have a hyperbola.

6. Examples of the visualization
Using Dervive 5 we can visualizate considered curves in all three possible sit-
uations: elliptic, parabolic and hyperbolic ones. Moreover, we obtain the exact
formulas for the projections at hand. For instance, with a = 1 and b = (1 : 2 :
−3 : 1) we obtain r1(u) = −2 · (15u2 + 48u + 35), r2(u) = −2 · (15u2 − 9u − 28),
r3(u) = −2 · (15u2 + 24u − 7), r4(u) = 2 · (9u2 + 30u + 29) > 0, so the (a, b)-
curve is the ellipse. The standard equation of its projection on the plane z = 0 is
9140x2 + 1508x · y + 458y2 + 14277x+ 4674y + 735 = 0.

7. Conclusions and final remarks
We derived general formulas for the point M laying in the cross of two distinct
linesAB and T1T2 in the projective space P3. For a straight lineAB passes through
the point A laying on the cubic line K, and the point B /∈ K, the line T1T2 is the
bisecant of K which passes through M . For every M there is exactly one such
bisecant and there is a point X on this bisecant such that the (T1, T2;M,X) = −1.



The analytical transformations and the visualization were effectuated in Derive
5, without any use of a computer algebra system these tasks are extremely time-
consuming, the calculations in the approximate mode (as well as in any NOS, i.e.,
numerically oriented systems) fail (and it can be easily check, e.g., if one would
like to derive a formula covering the ellipse described in the example above).
Authors intend to continue their research to find, e.g., some general issues on the
image at hand with an arbitrary value of the cross-ratio λ.
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The Bogomolov multiplier is a group theoretical invariant isomorphic to the un-
ramified Brauer group of a given quotient space, and represents an obstruction to
the problem of stable rationality of fixed fields. We derive a homological version
of the Bogomolov multiplier, prove a Hopf-type formula, find a five term exact
sequence corresponding to this invariant, and describe the role of the Bogomolov
multiplier in the theory of central extensions. An algorithm for computing the
Bogomolov multiplier is developed. This enables computations of the unrami-
fied Brauer groups of groups of large order. A new description of the Bogomolov
multiplier of a group of class two is obtained. We define the Bogomolov multi-
plier within K-theory and show that proving its triviality is equivalent to solving
a long-standing problem posed by Bass.
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Many biological phenomena may be modeled mathematically by continuous or
discrete dynamical systems. In order to understand the phenomenon described
by a complex dynamical system, it is necessary to study its behaviors such as
stability, bifurcations, and limit cycles qualitatively. For nonlinear dynamical sys-
tems, it is a crucial and challenging task to analyze their qualitative behaviors,
and in the literature of experimental biology, this analysis is often performed by
purely numerical simulation. The rigorous analysis of dynamical systems with
exact symbolic and algebraic computation is an important problem.

In this talk we will show how to use algebraic methods based on triangular de-
composition, Gröbner bases, discriminate varieties, quantifier elimination and
real solution classification to detect the real steady states and analyze the stability
of each steady state, as well as analyze bifurcations and limit cycles for dynam-
ical systems. Some experimental results for several biological models by using
our approach will be presented.
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During the last years several active and very promising open-source mathemat-
ical software projects were started. One of them - Sagemath - is a free project
with many international contributions (http://www.sagemath.org/). This
software is specially actively developing and has acquired a property that can be
described as critical moment - it’s increasing attracting attention and upgrading
from many who might instead work on independent projects of lesser scope. The
basic goal of Sagemath is to provide for mathematics what Linux has provided
for operating systems - a medium for free, creative expression, not suppressed
by extreme proprietary interests and restrictions. That is why Sagemath most
happily runs on Linux, though it can be easily used with Windows as well.

Sagemath includes many special packages, dedicated to different mathematical
areas: calculus, linear algebra, number theory, theory of groups, theory of rings
and fields, etc. A good portion of Sagemath support for group theory is based on
routines from well known GAP package (Groups, Algorithms and Programming)
- see http://www.gap-system.org/. Therefore, groups can be in Sagemath
described in many different ways, such as: sets of permutations, sets of matrices
or just sets of general symbols, subject to some defining relations.

For permutations Sagemath uses the unique “disjoint cycle notation” and the
product (composition) operation works “from left to right”. It recognizes many
popular classical groups as sets of permutations:

Notation Description
SymmetricGroup(n) full symmetric group of order n

AlternatingGroup(n) the alternating group of order n

DihedralGroup(n) symmetries of a regular n-gon
direct product permgroups([G 1,G 2]) a direct product of groups
PermutationGroup(["(1,2,3)(4,6)(5,7)",

"(1,2)(4,5,6,7)"])
a semi-direct product of Z3oZ4,
and nonisomorphic to A4, D6



For each permutation groupGwith a command of the formG.is . . . () we can find
out whether it is abelian, cyclic, nilpotent, solvable, simple or transitive. There are
also simple commands to check whether it is a normal subgroup and to find its
classes of conjugated elements or subgroups. We can also search for Sylow sub-
groups or normal subgroups of a given permutation group, find its lower and
upper derived series. Sagemath creates a Cayley table of a group and draws its
Caley graph. There are also several built in functions dealing with the action of a
group on a final set and giving us the characters of the irreducible representations
of a permutation group.
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The mathematical research field known as Lie group analysis was created in the
second half of the 19th century by Sophus Lie (1842-1899). Lie was influenced
and inspired by the work of Abel in what is known today as Galois theory. One
of Lie’s greatest achievements was the creation of a unified theory of integra-
tion for both ordinary and partial differential equations. He also proved (among
other things) that if a differential equation is invariant with respect to the action
of a continuous group of point transformations (he also considered contact trans-
formations) the order of the differential equation can be reduced by one. While
the general theory of Lie groups is quite well and widely known, Lie’s original
ideas, in the context of differential equations, are now known only to specialists.

The aim of this talk is to introduce (from a modern point of view) some group
theoretic methods of integration of differential equations due to S. Lie. I will
discuss some basic concepts of this theory; namely: continuous groups of trans-
formations and their infinitesimal generators, the concept of a symmetry of a
differential equation, simple methods of finding those symmetries (using Lie’s
algorithm) and methods of using them; namely: how to find specific solutions
(invariant under the action of the symmetry group) called similarity solutions,
general solutions, construct new solutions from old solutions, reduce the order
of the equation, integrate equations produced by a variational principle (systems
that play an important role in physics and geometry).
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In this talk I present recent developments achieved in my working group at RISC.
Primary focus is put on applications of symbolic computation methods. A major
part of the talk is devoted to the application of holonomic tools to problems re-
lated to Coulomb integrals in quantum physics (joint work with S. Suslov). If time
remains I will report on new computer algebra methods in connection with spe-
cial function inequalities (joint work with V. Pillwein) and modular forms (joint
work with S. Radu). Papers related to my talk can be found at http://www.ris
c.jku.at/research/combinat/publications.
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Substantial progress has been made in the past in design of algorithms for the
class of holonomic sequences, which has very nice closure properties (cf. [1 – 5]).
Although large, this class still fails to include several important and relatively
simple sequences, encountered in combinatorial enumeration, such as ordinary
powers, Stirling numbers of the first and second kind, and Eulerian numbers. So
it seems necessary to turn attention to “subholonomic sequences” which retain
some, but not all of the nice properties of holonomic ones. The hope is that this
may help us in tackling certain easy-to-state but difficult-to-solve combinatorial
problems, such as enumeration of lattice paths in restricted regions, and enumer-
ation of restricted permutations.
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It turns out that there exist numerous useful variants of trivalent graphs. Some
are needed in connection with maps, hypermaps, configurations, polytopes, ben-
zenoid systems, or covering graphs. In this talk we briefly explore these con-
nections and give motivation why some decorated trivalent graphs should be
enumerated and generated.
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The problem of finding antiderivatives of given functions is very old. For ra-
tional integrands algorithms are known already for a long time. In 1969 Robert
Risch published an algorithm that finds an elementary integral of an elementary
function provided such an indefinite integral exists. In this talk an extended ver-
sion of Risch’s algorithm for Liouvillian integrands is presented. It will also be
discussed how this can be used for obtaining linear differential, recurrence, or
mixed relations for definite integrals involving parameters, e.g. special functions
given by an integral. Illustrating examples will be given.
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Consider a dynamical system described by ODE’s of the form

dz

dt
= F (z) (z ∈ Ω), (1)

where F : Ω 7→ TΩ is a vector field and Ω is a manifold. A time-reversible
symmetry of (1) is an invertible map R : Ω 7→ Ω, such that

d(Rz)

dt
= −F (Rz). (2)

We investigate the case of two-dimensional polynomial systems, that is, z = (x, y)
is from ∈ C2 or R2, and F is a polynomial vector-function. We also assume that R
is a linear transformation.

If the coefficients of F are parameters, then the action of the group SL(2,C) (or
SL(2,R)) on z induces a transformation of the coefficients of (1). These transfor-
mations also form a group which we denote by U . We call polynomial invariants
of U the Sibirsky invariants of system (1). In the talk we describe an efficient al-
gorithm to compute a generating set of these invariants. Using methods of com-
putational algebra we show an interconnection of the physically important phe-
nomena of time-reversibility, involution and the Sibirsky invariants in dynamical
systems (1). Furthermore, we characterize the set of all time-reversible systems
within a particular family of complex two-dimensional polynomial differential
systems and give an efficient computational algorithm for finding this set.

We then discuss application of the invariants to studying periodic oscillations and
limit cycles bifurcations in polynomial systems of ODEs. The computations are
performed using the computer algebra system SINGULAR.
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The algebraic treatment of logical networks via Boolean Algebra is well known.
In this scenario, the value of entries or switches is just zero or one, thus a bi-
nary information processing. One may however also consider networks in which
switches or gates are triggered with a certain probability and ask for the signal
transferring function in terms of these different probabilities. A key to the gener-
alization is provided through the third Kolmogorow axiom and leads to a compu-
tation scheme for a given network. The signal transferring function is calculated
as a more or less complex polynomial in the different probabilities which occur.
Imposing certain boundary conditions for the entrances, one may calculate the
probability of how ”hot” or how ”cold” a specific wire in the network is, of what
is the ”hottest” or most active part of the network and so on. The question arises:
Can one find clever algorithms for computing the wire probabilities and the sig-
nal transferring term in more complex networks with huge numbers of gates?
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Multipoint codes are a broad class of algebraic geometry codes derived from al-
gebraic functions which have multiple poles on defining curves. Thus, they are
more general than one-point codes which are an important class of algebraic ge-
ometry codes in the sense that they can be decoded efficiently by using the BMS
algorithm [4]. Furthermore, some multipoint codes have better performance than
comparable one-point codes from the same curves. In this paper we present a
fast decoding method of multipoint codes from algebraic curves. Since any alge-
braic geometry codes from algebraic curves are essentially the same as multipoint
codes, this means that almost all algebraic geometry codes can be decoded effi-
ciently. The method is based on the observation that any multipoint codes are
subcodes of one-point codes [2], and that such codes can be decoded by a varia-
tion of the original BMS algorithm called vectorial BMS algorithm [3].

A one-point code from an algebraic curve is defined by a symbol locator set P :=
{Pi | 1 ≤ i ≤ n} and a function space L(mP∞), where P is a set of Fq-rational
points on an irreducible and non-singular algebraic curve X (the infinity point
P∞ 6∈ P), and n(= #P) is the code length. Further, L(mP∞) is the linear space of
algebraic functions f on the defining curve X having the infinity point P∞ as a
single pole with pole order o(f) (:= −vP∞(f); vP∞(f) is the valuation of function
f at P∞.) less than or equal to a given positive integer m (< n). Then, we have
two kinds of codes, called primal code (or L-code) and dual code (or Ω-code).

C(mP∞) := {c = eval(f) | f ∈ L(mP∞)};
C⊥(mP∞) := {c ∈ Fn

q | c · eval(f)(:=
∑

1≤i≤n cif(Pi)) = 0, f ∈ L(mP∞)},

where eval(f) := (f(Pi))1≤i≤n(∈ Fn
q ). While a one-point code is defined from a

divisor mP∞ with a single pole P∞ as its support, a (general) algebraic geom-
etry code C(G) from a curve is defined from any divisor G :=

∑
1≤i≤amiQi −∑

1≤j≤b njRj , where mi > 0, 1 ≤ i ≤ a; nj > 0, 1 ≤ j ≤ b, and {Qi | 1 ≤ i ≤
a} ∩ {Rj | 1 ≤ j ≤ b} = ∅. Since there exists an algebraic function h with divisor
(h) =

∑
1≤i≤am

′
iQi − m′P∞, where m′

i ≥ mi, 1 ≤ i ≤ a and m′ =
∑

1≤i≤am
′
i,

multiplication by h induces an isomorphism

L(G) → L(m′P∞ −G′)

f 7→ hf



whereG′ :=
∑

1≤j≤a(m
′
i−mi)Qi+

∑
1≤j≤b njRj is a positive divisor. SinceL(m′P∞−

G′) is a linear subspace of L(m′P∞), the primal code defined from L(m′P∞ − G′)
is a subcode of the one-point code C(m′P∞). Therefore, we have only to consider
codes C(G) defined from a divisor of the form G := mP∞ −

∑
1≤j≤b njQj , where

nj > 0, 1 ≤ i ≤ b. In this paper, we consider such codes defined from a plane
curve X , particularly from a Hermitian curve: yq1 − xq1+1 + y = 0 over the finite
field Fq, where q = q2

1 . On discussing decoding such codes C(G), the following
observation is important:
Lemma 1: L(∪i≥0iP∞) is just the ring R := Fq[x] := Fq[x, y] of bivariate polyno-
mials, where x = (x1, x2) = (x, y), and L(∪i≥0iP∞ −

∑
1≤i≤b niQi) is an ideal I of

the ring R, which is composed of bivariate polynomials f = f(x) = f(x1, x2) =
f(x, y) having Qj as zero with order ≥ nj , 1 ≤ j ≤ b.
Beelen and Hoeholdt [1] have presented a basic decoding algorithm of (general)
primal algebraic geometry codesC(G) defined from general divisorG and shown
Lemma 2 (Proposition 2.10 of [1]): Let c = eval(f) ∈ C(G) be a codeword and
e ∈ Fn

q be an error vector of weight t < (n− degG− g)/2, where g is the genus of
the defining curve X . For the received word r = c + e, there exists a polynomial
Q(z) = Q0 +Q1z (∈ R[z]) satisfying the interpolation condition

Q0(Pj) + rjQ1(Pj) = 0, 1 ≤ j ≤ n (1)

with Q0 ∈ L(A) and Q1 ∈ L(A − G) for a divisor A with Supp(A) ∩ P = ∅ such
that (1) degA < n − t, (2) l(A − G) > t, where l(A − G) is the dimension of the
subspace L(A − G), and it holds that f = −Q0/Q1. Further, the polynomial Q1

has the error locators E ⊂ P as its zeros, i.e. Q1(Pj) = 0, Pj ∈ E .

Thus, this basic decoding algorithm can correct up to b(n−degG−g−1)/2c errors.
We present a fast method of finding a reduced Groebner basis of the error locator
ideal I(E) := {f ∈ I | f(Pj) = 0, Pj ∈ E} or rather a reduced Groebner basis of
the R-module M(f, E) := {(−fh, h) ∈ I × R | h ∈ I(E)}. Consequently, we can
find the exact error locators as well as the encoding function f efficiently .
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In this talk we demonstrate how the summation package Sigma can be used to
simplify multi–sums with the symbolic summation paradigms of telescoping,
creative telescoping and recurrence solving. The underlying algorithms are based
on our refined difference field theory of Karr’s ΠΣ-fields. Special emphasis is put
on brand new evaluations of 2– and 3–loop massive single scale Feynman dia-
grams with operator insertion arising in the cooperation with Johannes Blümlein
(DESY–Zeuthen; Deutsches Elektronen Synchrotron).
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[5] I. Bierenbaum, J. Blümlein, S. Klein, and C. Schneider, Two–loop massive oper-
ator matrix elements for unpolarized heavy flavor production to o(ε), Nucl.Phys.
B 803 (2008), no. 1-2, 1–41, [arXiv:hep-ph/0803.0273].



Cyclicity of Systems of Polynomial Differential
Equations with Nonradical Bautin Ideals

DOUGLAS S. SHAFER

Mathematics Department
University of North Carolina at Charlotte

Charlotte, NC 28223
USA

dsshafer@uncc.edu
http://www.math.uncc.edu

The cyclicity of an elementary focus or center of a system (*) ẋ =
∑

j+k≤n ajkx
jyk,

ẏ =
∑

j+k≤n bjkx
jyk on the plane is the maximum number of limit cycles that can

be made to bifurcate from the singularity under small perturbation of the coef-
ficients of the right-hand sides. We complexify the system and let B denote the
Bautin ideal, the ideal generated by the focus quantities of family (*), polynomials
in the coefficients whose vanishing characterizes a center at the origin. Suppose
BK is the ideal generated by the first K focus quantities and generates the same
variety as B. If the ideal BK is radical then the cyclicity is bounded above by K.
We show how exploiting the structure of the focus quantities sometimes permits
moving the ideals to a new ring in which a non-radical BK can become radical.
We use an example to illustrate how theorems of computational commutative al-
gebra make all the relevant computations feasible.
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We consider the problem about a correspondence between elements of universal
Gröbner bases of two ideals connected by a polynomial transformation. Hoon
Hong in the paper [1] proved that Gröbner basis computation commutes with
polynomial composition if and only if the composition is compatible with the
term ordering and nondivisibility. Nevertheless we show that partial correspon-
dence between the elements of universal Gröbner bases of two ideals connected
by a polynomial transformation can be established. Our approach is based on the
conception of extended universal Gröbner basis of polynomial ideal introduced
in [2]. It can be defined in terms of dimensions of crossections of ideal with linear
spaces generated by multidimensional Young diagrams of the monomial lattice.
Such extended universal Gröbner basis EUGB contains the standard universal
Gröbner basis by Mora-Robbiano and is finite also. We study how the elements
of EUGB transform under arbitrary polynomial transformations. In the case of
monomial transformation our approach allow us to describe some elements of
universal Gröbner bases of ideals which contains nontrivial toric ones.
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Suppose Alice has a coin with heads probability q and Bob has one with heads
probability p > q. Now each of them will toss their coin n times, and Alice will
win iff she gets more heads than Bob does. Evidently the game favors Bob, but for
the given p, q, what is the choice of n that maximizes Alice’s chances of winning?
We show that there is an essentially unique value N(q, p) of n that maximizes
the probability f(n) that the weak coin will win, and it satisfies

⌊
1

2(p−q)
− 1

2

⌋
≤

N(q, p) ≤
⌈

max (1−p,q)
p−q

⌉
. The analysis uses the multivariate form of Zeilberger’s

algorithm to find an indicator function Jn(q, p) such that J > 0 iff n < N(q, p)
followed by a close study of this function, which is a linear combination of two
Legendre polynomials. An integration-based algorithm is given for computing
N(q, p). This is joint work with Vittorio Addona and Stan Wagon, of Macalester
College.
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Two different definitions of radical of an ideal in ring theory correspond two
different notions which are not always coincide in modules theory. Let R be a
commutative ring with unity and let M be an R-module. The envelope of a sub-
module N of M is the module generated by the set

EM(N) = {rm : r ∈ R,m ∈M and rkm ∈ N for some k ∈ Z+}.

A submodule P of M is called prime (primary) submodule if rm ∈ P implies
either m ∈ P or r ∈ P : M(r ∈

√
P : M). The radical of a submodule N of

M , denoted by radM(N), is the intersection of all prime submodules containing
N . It is well-known that 〈EM(N)〉 ⊆ radM(N). If equality hold it is said that
submodule N satisfies the radical formula, or briefly strf. If every submodule of
M are strf, then M is called strf. Although there many study on the subject which
module are strf, there is a little effort to actually compute the envelope and the
radical of a submodule.

In this work, we assumeR is Noetherian andM is a finitely generatedR-module.
In this case every submodule of M has a primary decomposition. Our goal is to
compute the envelope and the radical of a submodule N of M using this primary
decomposition.
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An undirected graph Γ = (V,E) is called semisymmetric if it is regular (of valency
k) and Aut(Γ) acts transitively on E and intransitively on V .

We consider the unique semisymmetric graph L of valency 3 on 112 vertices,
which is commonly called the Ljubljana graph (see, for example, [3]). Another
semisymmetric graphN on 112 vertices of valency 15 was discovered in 1977 and
described in [2]. It turns out that L is a spanning subgraph of N and moreover,
Aut(L) is a subgroup of Aut(N ).

We present an outline of a new approach to the graph L. In particular, all em-
beddings of L into a fixed copy of N are considered, as well as related diverse
combinatorial and geometric structures. The use of standard double covers (as in
[1]) serves as a bridge between relevant concepts from topological and algebraic
graph theory.

Let Γ = (V,R) be a directed graph. Consider the standard double cover Γ̂ = (V̂ , R̂),
V̂ = V × {1, 2}, R̂ = {{(x, 1), (y, 2)}|(x, y) ∈ R}.

Let Ω = V1 = {(x, y)|x, y ∈ F8, x 6= y} and let (G,Ω) be the induced transitive
action of G = AΓL(1, 8) on Ω of degree 56. It is easy to see that (G,Ω) has rank
56−2

3
+ 2 = 20. Thus we construct our master association scheme m = (Ω, 2 −

orb(G,Ω)).

Then L is a double cover of a 8 of the classes of Ω. Those 8 copies of L furthermore
can be partitioned into four pairs, where the union of each pair of graphs has a
unique extension to N .
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Concert by the duo FLA-VIA
1 July 2010, 19:45

Art Kavarna of the hotel PIRAMIDA



1) J.Ch. Bach: Sonata no. 2:

- Allegro
- Menuet
- Finale

2) G. Ph. Telleman: Sonata in E-dur

- Andante con affeto
- Vivace
- Amoroso
- Presto

3) A. Stamitz: Duo in D-dur

- Allegro moderato
- Menuetto

4) G. Briccialdi: Allegro

5) G. Rossini: Duets from ”The Barber of Seville”

- Cavatina (Figaro)
- Duetto (Figaro, Almaviva)
- Finale



DUO FLA-VIA



Duo Fla-Via are Špela Kržan (flute) and Barbara Danko (violin), two young
and talented musician, who despite their youth already have a varied and rich
musical past. Both of them gathered their musical knowledge abroad (Vienna,
Austin, Saint Petersburg, Paris) and are professionally active in Slovenia, as well
as abroad. They formed the Duo Fla-Via in December 2009. Since then Duo
Fla-Via has had some very successful concerts. Among the most popular were
concerts at Ptuj and in Litija.. They repertoire is broad and consists of chamber
works for flute and violin and soloistic pieces for both instruments. One of their
strengths as musicians is also the ability to present classical music in an unclassi-
cal way and they also play different styles (Folk music, Latin music, Tango, Rock
music...). Because of that Duo Fla-Via is an interesting, fresh and versatile cham-
ber ensemble.

Mag. art. Špela Kržan (flute) completed her postgraduate studies of flute with
honours at the University of Music and Dramatic Arts in Vienna, where she stud-
ied with professor Hansgeorg Schmeiser-ROM. She studied at the ”Conservatoire
National Superieur de Musique et de Danse de Paris” with professors Vincent Lu-
cas, Sophie Cherrier, and Philippe Bernoldi as a part of international exchange of
students - Erazmus. In September 2009 she won the international competition for
the flute in Israel - Haifa International Flute Competition 2009. She also success-
fully participated in other international competitions, including the ARD Compe-
tition in Munich, Jeunesse Musicales in Romania, Böhm Competition in Munich,
Domenico Cimarosa, Italy She attended several masterclasses with renowned
professors like Luisa Sello, Aurelle Nicolet, Davide Formisano, Jan Ostry, Karl
Heinz Schũtz, Natalie Rozat, AleŠ Kacjan, Gaspar Hoyos and others.

Špela Kržan continues her solo career as a concert flutist and a member of cham-
ber ensembles with harp, organ and violin at home and abroad. She was a
long-standing member of Youth Symphony Orchestra, Wiener Jeunesse Orch-
ester, with which she attended an orchestral tour in Bombay (India) in February
2008. Occasionally she participates in the Vienna People’s Opera, Vienna Volk-
soper. In August 2009 she held a masterclass for flute in Radlje ob Dravi. She is
currently employed as a professor of flute at SGBŠ Maribor, Lenart, at a private
music school in Gornja Radgona Maestro and Music School in Radlje ob Dravi.
She is a co-founder of Duo Fla.-Via.

Barbara Danko, M. M. (violin) started her musical path at the age of six with
the professor Zvonka Pal at the Elementary school of music in Maribor. Her tal-
ent was soon revealed and she won a second prize at the International violin
competition Alpe-Adria at the age of eight.. She continued her musical train-
ing at the High school of Music and Ballet in Maribor with Ivan Pal.. At the
age of sixteen she was admitted to the Academy of Music in Ljubljana as highly
talented to study with professor Rok Klopčič. In 2006 she was accepted to a post-
graduate program at The University of Texas at Austin, Austin, Texas, for which
she also received a University grant. There she studied with Dr. Eugene Gra-
tovich. She completed her studies with honors in May 2008. Barbara competed
in several national and international competitions and achieved high rankings



She attended music festivals in Europe (Saint Petersburg, Russia; Burgos, Spain;
Viana do Castelo, Portugal) and the USA (Austin, Texas), where she also had solo
recitals. In 2008 she was honored by the University of Texas at Austin for an out-
standing master’s recital. She was one of the first members of Austin pops, the
leading Austin orchestra for popular music and regularly worked with Temple
Symphony Orchestra and Brazos Valley Symphony Orchestra.

During her time at the UT at Austin she was also a member of String Project, an
organization for educating children in string instruments. She was also Dr. Eu-
gene Gratovich’s teaching assistant. She is currently employed as violin teacher
at the Private music school in the monastery of Saint Peter and Paul in Ptuj and
the Private music school Maestro in Gornja Radgona. She is also active as a solo
and chamber musician and is a member of a rock group Avven. In the summer
of 2009 she organized the festival Glasba v Kloštru, which had a great response.
She is a co-founder of Duo Fla-Via and the project SLO-STRINGS.


